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s Abstract

¢ Earthquake prediction is a difficult task. Constrained within a certain spatiotemporal range,

7 earthquakes are only a probability event. In a large area, predicting earthquakes based on

s geographical events that have already occurred is reliable. Predicting the duration of

o aftershocks under the condition that a major earthquake has already occurred is the research
10 content of this article. Extract 6 features from seismic phase data to predict the aftershock

1 period. We constructed a convolutional neural network model, sorted out 855 data from 1351
12 data, and trained the network. The accuracy of training verification reaches 90

13

14 Index terms— convolution neural network; aftershock predict; earthquake predict

5 1 1. Introduction

16 n earthquake is a random event. A large number of earthquake events have left behind rich observational data.
17 With our understanding of natural laws, we may be able to identify the patterns of earthquakes from big data.
18 Cattania et al. [Cattania, 2019] believe that earthquakes cannot be considered as an isolated event for research.
19 To study the possibility of earthquakes occurring within a larger regional space. Chang Qing Li [Chang- ??ing
20 Li, 2018] used the LSTM model to predict the location and direction of fractures in granite fracture experiments
21 conducted in the laboratory. Sehrish et al. believe that neural networks can express the mapping relationship
22 between earthquake occurrence signs and probabilities. They use BAT-ANN networks to avoid the algorithm
23 falling into local optima and missing out on global optima. Asmae Berhich et al. predicted the likelihood of
24 earthquakes based on their time, location, and magnitude.

25 We believe that the aftershock period can be predicted on the premise that the earthquake has already occurred.
26 Obviously, neural networks are currently the best tool available. In order to prevent overfitting of the model, we
27 chose the convolutional model. In order to make the data more comprehensive, we selected 856 data from 2351
28 data of an earthquake. In order to make the data features more comprehensive, we selected 7 feature data from
29 the seismic phase data block to form the input vector.

w» 2 II. Relate Works

31 Helene et al. [Helene, 2018] conducted research on earthquake prediction. In the early days, seismologists
32 believed that prediction was the logical goal of earthquake research. For most of the 20th century, optimism
33 towards predicting earthquakes persisted. As bonuses flow into seismology, it drives predictive research towards
34 conclusions. China seems to have successfully predicted earthquakes, which makes the development of earthquake
35 prediction methods imminent. The goal of seismological research is to predict without any problems, but it
36 should be carried out under the premise of rational and correct use of information and understanding of inherent
37 difficulties. The public’s response to earthquake prediction shows that 60-85% of people believe that earthquakes
38 can be predicted.

39 Asmae Berhich et al. [Berhich, 2020] divided the Chilean earthquake dataset into two types: large earthquakes
40 and small earthquakes. They believe that there are four methods for predicting earthquakes, namely precursor
41 signals, statistical algorithms, machine learning, and deep learning. They take latitude, longitude, depth, year,
42 month, day, hour, minute, second, and magnitude as 10 characteristic parameters from the seismic dataset.
43 Large earthquakes with magnitudes greater than 5.0 are considered major earthquakes, while earthquakes with
44  magnitudes 0.2 to 5.0 are considered minor earthquakes. By constructing an LSTM network with 10 neurons,
a5 four prediction results are output: magnitude, latitude, longitude, and year. Normalize the input data to [0,1].
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5 IV. EXPERIMENT AND RESULTS

Take 80% of the dataset for training and 20% for testing. The experimental results were evaluated using MAE
and MSE.

Saba Sehrish et al. [Sehrish, 2017] Molchan et al. [Molchan, 2017] believe that there is no standard method
for earthquake prediction and evaluation. It is necessary to carefully examine the theoretical analysis. One
important point to emphasize is that algorithms based on early warning mechanisms are not trustworthy.

Cattania et al. [Cattania, 2019] proposed that the prediction of large earthquakes should be studied in a
large spatiotemporal space. Relatively speaking, small earthquakes are caused by the slow rupture of isolated
convex bodies while large earthquakes have already occurred. These fractures are periodically repeated and can
be predicted. They conducted research on earthquake prediction from a temporal and spatial perspective.

Qianlong W et al. [Qianlong W, 2020] constructed a two-dimensional input LSTM to reveal the spatiotemporal
relationship of historical earthquakes. Divide LSTM into small parts to reduce algorithm complexity. They
noticed that most neural network algorithms use different feature inputs. Not fully considering the spatiotemporal
relationship of earthquakes. In the time domain, there seems to be a reasonable pattern of seismic activity. In
the spatial domain, adjacent geographical activities can trigger each other. RNN is not suitable for handling
long-term time dependence. LSTM uses functions to store information, replacing memory units. The unit state
is transmitted along the entire path, only undergoing some linear interaction in the middle, and the information
can be well maintained to the output end. Compared with one-dimensional input, the algorithm verification
accuracy has improved from 79.6% to 87.8%.

Gitis et al. [Gitis, 2021] believe that a dense network of GPS receiving stations can monitor the movement
of the Earth’s surface. Can these measurement data be effectively used for system earthquake prediction. The
paper studied data from Japan and California. Propose the minimum alarm area method to analyze the daily
time series of horizontal displacement on the Earth’s surface. Clearly distinguish the spatial and temporal regions
of the location before the epicenter of a strong earthquake. Reflecting abnormal changes in seismic structures
and geodynamic processes can be predicted.

Rui L et al. ??Rui L, 2020] divided earthquake sequences into multiple learning samples and precursor
patterns. Based on these patterns and samples, eight dominant features are extracted, while implicit features
are also extracted. Based on the attention mechanism, combine explicit and implicit features. A dynamic loss
function was designed in the model optimization using a small batch gradient descent optimization method.
Adapting to different training data and balancing different categories of algorithms by combining explicit and
implicit features is an effective earthquake prediction method.

William et al. [William, 2019] wrote a collection of 20 papers. It is divided into seven parts, including historical
earthquake phenomena, physical models, precursor earthquakes, surface geochemistry, seismic related atmosphere
signals, ionospheric processes, and interdisciplinary earthquake prediction methods. Believing that earthquake
warning can promote building standards. Build buildings and facilities that can withstand earthquakes. It can
reduce the cost of future earthquakes and reduce the number of injuries and deaths.

Danijel et al. [Danijel, 2018] pointed out that CSEP is a global network infrastructure used for prospective
evaluation of earthquake prediction models and algorithms. The global CSEP collaboration has been conducting
predictive experiments in various tectonic environments worldwide. The experiment provides a large number of
results, providing information for operable earthquake prediction systems and earthquake disaster models. New
and surprising insights have been provided on the predictability of earthquakes.

Gualberto et al. [Gualberto, 2016] explored seismic indicators on the Chilean National Earthquake Service
dataset. After fully adjusting these indicators, the accuracy of prediction can be improved. The results
indicate that by adjusting the input appropriately, the predictive ability of the classifier is significantly exceeded.
Optimize and develop adaptive systems that utilize all available information, discover new metrics to provide
more information to the system. Elshin Oleg et al. [Oleg, 2020] introduced Terra Seismic, which can predict
most major earthquakes 2-5 months in advance. The geological pattern and pressure accumulation of earthquake
development are usually the same. Terra Seismic currently provides earthquake prediction for 25 key earthquake
prone areas. Successfully detected approximately 90% of major earthquakes in the past 50 years.

3 Aftershock Predict based on Convolution Neural Networks
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III. Proposed Method

5 IV. Experiment and Results

The data is from China Earthquake Networks Center and National Seismological Science Data Center (
http://data.earthquake.cn ). We selected the seismic phase data block DPB from the Qinghai Maduo 7.9
magnitude earthquake phase dataset on May 22, 2021 at 02:04. Original data shows in figure4.There are 1351
recorders. Training performance shows as figure 3.
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The above literature shows that aftershocks can be predicted. Neural networks are the most suitable method to
establish corresponding prediction models. Seismic phase refers to seismic wave groups with different properties or
propagation paths displayed on seismic maps. Various seismic phases have different characteristics. Specifically, in
terms of arrival time, waveform, amplitude, period, and particle motion mode. The seismic phase characteristics
are related to the source, propagation medium, and receiving instrument. These wave groups all have a certain
duration. The waveforms of different seismic phases overlap with each other, causing interference, resulting in
a complex pattern in the seismic map. One of the tasks of seismology is to analyze and explain the causes and
physical meanings of various seismic phases. Using various seismic phase characteristics to determine the basic
parameters of earthquakes, studying the mechanical properties of seismic sources, and exploring the internal
structure of the Earth.

Filter the raw data. Select 7 features. They are: Phase when the seismic phase arrives_ Time, travel time
residual Resi, epicenter distance, station azimuth Azi, amplitude Amp, magnitude Mag_ Val and Period. Due to
the fact that the dates are on the same day, only hours, minutes, and seconds are taken. For ease of operation,
subtract the initial time from the time and take the offset as the time characteristic value. Figure 5 From the
rendering, it can be seen that the built-in trainingdx training function has a large output value of the entire model,
resulting in significant errors that make the model unusable. In addition to output constraints and setting an
output upper limit, the training is good and the approximation effect is good. This indicates that the improved
constrained training dx training function can handle similar situations where the model output value is too large
or too small, resulting in better results.

Mean square error (MSE) is a measure that reflects the degree of difference between the estimator and the
estimated quantity. Let t be the overall parameter determined based on the sample 7. An estimator of (?-t) is
mathematical expectation of 2. It is called the mean square error of the estimator t. It is equal to 7 2 +b 2,
where 7 2 and b are the variance and bias of t.

9 Aftershock Predict based on Convolution Neural Networks
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Consistent estimation (or consensus estimation) is the standard for evaluating estimators in large samples. When
the sample size is not large, people tend to use small sample based evaluation criteria. In this case, variance is
used for unbiased estimation and mean square error is used for biased estimation.

Generally, when the sample size is fixed, the criterion used to evaluate the quality of a point estimation is
always a function of the distance between the point estimation and the true value of the parameter. The most
commonly used function is the square of the distance. Due to the randomness of the estimation, the expectation
of this function can be obtained, which is the mean square error given by the following equation:

11 VI. Conclusions

Predicting the duration of aftershocks is feasible on the premise that an earthquake has already occurred. In
different regions, aftershock warning mechanisms can be established based on the geological conditions of the
region. Expanding to larger regions and for a longer period of time, based on existing earthquakes, predicting
future earthquakes should also be feasible. This is the direction that this article strives to explore. Earthquake
prediction is not the goal. The goal of this study is to provide data support for earthquake relief. In the event
of an earthquake, minimize personnel and property damage as much as possible.

In future research, we will delve deeper into the use of deep learning algorithms and construct new aftershock
prediction models using typical residual models. Fully utilize all parameters in seismic phase data to make
detailed predictions of aftershocks. 1

1 © 2023 Global Journals
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A , B , C , D , E , , ,
1 | 02.05:46.10 24 6.1 341 3837 11.2 7.4
2 | 02:05:46.10 2.4 B.1 341 3837 11.2 74
3 | 02:0546.10 24 6.1 341 2971 135
4 | 02:05:46.10 2.4 6.1 341 2504 7.2 7.4
5 | 02:0546.10 2.4 6.1 341 2h 14
6 | 02:0546.10 24 6.1 341 22.3 16 5.4
7 | 02:07:30.00 4.3 6.1 341 223 16
8 | 02:06:06.00 4.3 6.1 341 22.3 16
9 | 02:06:06.00 4.3 151 56 g3641 209 ]
10 | 02:06:06.00 4.3 151 b 4891 196
11 | 02:06:06.00 4.3 151 a3 3048 181 7.9
12| 02:10:57.80 4.7 151 56 3048 1891
13 | 02:10:46.40 0.6 151 o4 3048 19.1
14 | 02:10:39.30 3.5 151 a3 3048 181
15| 02:07:53.60 -0.5 151 56 3048 1891
16 | 02:.07:46.60 -19 151 o8] 3048 19.1
17 | 02:07:46.60 -19 16.4 294 4294 171 7.8
18 | 02:07:46.60 -19 16.4 294 34972 158
19| 02:.07:46.60 -19 16.4 294 1781 17.1 79
20| 02:11:1150 5.2 16.4 294 1781 171

Figure 5: Figure 5 :

1 |Phase_time Resi Distance Azi Amp Mag_val Period_val Period
2 186.16 2.4 6.1 341 3837 7.4 3 11.2
3 186.16 2.4 6.1 341 3837 74 3 11.2
4 186.16 2.4 6.1 341 2504 74 2 7.2
5 186.16 2.4 6.1 341 22.3 6.4 1 16
B 246.06 4.3 151 56 8641 8 4 209
7 246.06 4.3 151 bh 3048 79 3 191
8 3686.66 -19 16.4 294 47294 7.8 3 171
g9 386.66 -19 16.4 294 1781 749 3 171
10 7hl1.56 h2 16.4 294 70 7.3 2 hd
11 751.56 5.2 16.4 294 6.3 6.9 1 12
12 | 442 56 -2.8 15.2 G4 82 B 4 201
13 442 56 -2.8 152 B 728 7.2 3 14
14 | 39346 -4.7 15.2 G4 269 6.6 2 9
15 39346 -4.7 15.2 G4 0.2 5.3 1 17
16 3686.36 -2.3 101 338 4333 76 3 135
17 | 386.36 -2.3 101 338 2823 74 3 147
18 386.36 -23 101 338 hib ki 3 115
19 | 386.36 -2.3 101 338 0.6 6.2 1 0.9
20 27846 -24 24.7 54 2558 749 3 142

Figure 6: Figure 6 :
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|. input matrix
HH 85657 double
1 2 3 5 6

1 GO0 2.4000 6.1000 341 3837 74000 3

2 186.1600 2.4000 6.1000 a4 3837 74000 3

3 186.1600 2.4000 6.1000 a4 2504 7.4000 2

4 186.1600 24000 6.1000 a4 22.3000 6.4000 1

5 246.0600 4.3000 15.1000 56 841 a8 4

6 246.0600 4.3000 151000 56 3048 7.9000 3

r 386.6600 -1.9000 16.4000 204 4294 7.8000 3

8 3B6.6600 -1.9000 16.4000 204 1781 7.9000 3

9 751.5600 5.2000 16,4000 294 70 7.3000 e

10 751.5600 5.2000 16.4000 204 6.3000 6.9000 1

1 442.5600 -2.8000 15.2000 64 B2 6 4

12 442 5600 -2.8000 15.2000 o4 728 7.2000 3

13 3093.4600 -4.7000 15.2000 ot 26.9000 6.6000 2

14 393.4600 -4.7000 15.2000 b4 0.2000 5.3000 1

15 386.2600 -2.3000 10,1000 338 4333 7.6000 3

16 3B86.2600 -2.3000 10,1000 338 2823 7.9000 3

17 386.3600 -2.3000 10,1000 338 53.6000 i 3

18 386.2600 -2.3000 10,1000 338 0.6000 6.2000 1

19 278.4600 -2.4000 24,7000 54 2558 7.9000 3

78 20 278.4600 -2.4000 24,7000 54 1446 8 3

Figure 8: Figure 7 :Figure 8 :
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i
2 1.055%e+03
3 1.0559e+03
4 388.1600
5 S88.1600
6 64 5.0600
T 645.0600
8 641.8600
9 641.8600
10 T65.8600
1 765.8600
12 4546600
13 454.6600
14 697.9600
15 697.9600
16 398.1600
17 398.1600
18 955.5600
19 955.5600
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