

CrossRef DOI of original article:

1 Aftershock Predict based on Convolution Neural Networks

2 Hongmei Yin

3 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

4

5 **Abstract**

6 Earthquake prediction is a difficult task. Constrained within a certain spatiotemporal range,
7 earthquakes are only a probability event. In a large area, predicting earthquakes based on
8 geographical events that have already occurred is reliable. Predicting the duration of
9 aftershocks under the condition that a major earthquake has already occurred is the research
10 content of this article. Extract 6 features from seismic phase data to predict the aftershock
11 period. We constructed a convolutional neural network model, sorted out 855 data from 1351
12 data, and trained the network. The accuracy of training verification reaches 90

13

14 **Index terms**— convolution neural network; aftershock predict; earthquake predict

15 **1 I. Introduction**

16 n earthquake is a random event. A large number of earthquake events have left behind rich observational data.
17 With our understanding of natural laws, we may be able to identify the patterns of earthquakes from big data.
18 Cattania et al. [Cattania, 2019] believe that earthquakes cannot be considered as an isolated event for research.
19 To study the possibility of earthquakes occurring within a larger regional space. Chang Qing Li [Chang- ??ing
20 Li, 2018] used the LSTM model to predict the location and direction of fractures in granite fracture experiments
21 conducted in the laboratory. Sehrish et al. believe that neural networks can express the mapping relationship
22 between earthquake occurrence signs and probabilities. They use BAT-ANN networks to avoid the algorithm
23 falling into local optima and missing out on global optima. Asmae Berhich et al. predicted the likelihood of
24 earthquakes based on their time, location, and magnitude.

25 We believe that the aftershock period can be predicted on the premise that the earthquake has already occurred.
26 Obviously, neural networks are currently the best tool available. In order to prevent overfitting of the model, we
27 chose the convolutional model. In order to make the data more comprehensive, we selected 856 data from 2351
28 data of an earthquake. In order to make the data features more comprehensive, we selected 7 feature data from
29 the seismic phase data block to form the input vector.

30 **2 II. Relate Works**

31 Helene et al. [Helene, 2018] conducted research on earthquake prediction. In the early days, seismologists
32 believed that prediction was the logical goal of earthquake research. For most of the 20th century, optimism
33 towards predicting earthquakes persisted. As bonuses flow into seismology, it drives predictive research towards
34 conclusions. China seems to have successfully predicted earthquakes, which makes the development of earthquake
35 prediction methods imminent. The goal of seismological research is to predict without any problems, but it
36 should be carried out under the premise of rational and correct use of information and understanding of inherent
37 difficulties. The public's response to earthquake prediction shows that 60-85% of people believe that earthquakes
38 can be predicted.

39 Asmae Berhich et al. [Berhich, 2020] divided the Chilean earthquake dataset into two types: large earthquakes
40 and small earthquakes. They believe that there are four methods for predicting earthquakes, namely precursor
41 signals, statistical algorithms, machine learning, and deep learning. They take latitude, longitude, depth, year,
42 month, day, hour, minute, second, and magnitude as 10 characteristic parameters from the seismic dataset.
43 Large earthquakes with magnitudes greater than 5.0 are considered major earthquakes, while earthquakes with
44 magnitudes 0.2 to 5.0 are considered minor earthquakes. By constructing an LSTM network with 10 neurons,
45 four prediction results are output: magnitude, latitude, longitude, and year. Normalize the input data to [0,1].

5 IV. EXPERIMENT AND RESULTS

46 Take 80% of the dataset for training and 20% for testing. The experimental results were evaluated using MAE
47 and MSE.

48 Saba Sehrish et al. [Sehrish, 2017] Molchan et al. [Molchan, 2017] believe that there is no standard method
49 for earthquake prediction and evaluation. It is necessary to carefully examine the theoretical analysis. One
50 important point to emphasize is that algorithms based on early warning mechanisms are not trustworthy.

51 Cattania et al. [Cattania, 2019] proposed that the prediction of large earthquakes should be studied in a
52 large spatiotemporal space. Relatively speaking, small earthquakes are caused by the slow rupture of isolated
53 convex bodies while large earthquakes have already occurred. These fractures are periodically repeated and can
54 be predicted. They conducted research on earthquake prediction from a temporal and spatial perspective.

55 Qianlong W et al. [Qianlong W, 2020] constructed a two-dimensional input LSTM to reveal the spatiotemporal
56 relationship of historical earthquakes. Divide LSTM into small parts to reduce algorithm complexity. They
57 noticed that most neural network algorithms use different feature inputs. Not fully considering the spatiotemporal
58 relationship of earthquakes. In the time domain, there seems to be a reasonable pattern of seismic activity. In
59 the spatial domain, adjacent geographical activities can trigger each other. RNN is not suitable for handling
60 long-term time dependence. LSTM uses functions to store information, replacing memory units. The unit state
61 is transmitted along the entire path, only undergoing some linear interaction in the middle, and the information
62 can be well maintained to the output end. Compared with one-dimensional input, the algorithm verification
63 accuracy has improved from 79.6% to 87.8%.

64 Gitis et al. [Gitis, 2021] believe that a dense network of GPS receiving stations can monitor the movement
65 of the Earth's surface. Can these measurement data be effectively used for system earthquake prediction. The
66 paper studied data from Japan and California. Propose the minimum alarm area method to analyze the daily
67 time series of horizontal displacement on the Earth's surface. Clearly distinguish the spatial and temporal regions
68 of the location before the epicenter of a strong earthquake. Reflecting abnormal changes in seismic structures
69 and geodynamic processes can be predicted.

70 Rui L et al. ??Rui L, 2020] divided earthquake sequences into multiple learning samples and precursor
71 patterns. Based on these patterns and samples, eight dominant features are extracted, while implicit features
72 are also extracted. Based on the attention mechanism, combine explicit and implicit features. A dynamic loss
73 function was designed in the model optimization using a small batch gradient descent optimization method.
74 Adapting to different training data and balancing different categories of algorithms by combining explicit and
75 implicit features is an effective earthquake prediction method.

76 William et al. [William, 2019] wrote a collection of 20 papers. It is divided into seven parts, including historical
77 earthquake phenomena, physical models, precursor earthquakes, surface geochemistry, seismic related atmosphere
78 signals, ionospheric processes, and interdisciplinary earthquake prediction methods. Believing that earthquake
79 warning can promote building standards. Build buildings and facilities that can withstand earthquakes. It can
80 reduce the cost of future earthquakes and reduce the number of injuries and deaths.

81 Danijel et al. [Danijel, 2018] pointed out that CSEP is a global network infrastructure used for prospective
82 evaluation of earthquake prediction models and algorithms. The global CSEP collaboration has been conducting
83 predictive experiments in various tectonic environments worldwide. The experiment provides a large number of
84 results, providing information for operable earthquake prediction systems and earthquake disaster models. New
85 and surprising insights have been provided on the predictability of earthquakes.

86 Gualberto et al. [Gualberto, 2016] explored seismic indicators on the Chilean National Earthquake Service
87 dataset. After fully adjusting these indicators, the accuracy of prediction can be improved. The results
88 indicate that by adjusting the input appropriately, the predictive ability of the classifier is significantly exceeded.
89 Optimize and develop adaptive systems that utilize all available information, discover new metrics to provide
90 more information to the system. Elshin Oleg et al. [Oleg, 2020] introduced Terra Seismic, which can predict
91 most major earthquakes 2-5 months in advance. The geological pattern and pressure accumulation of earthquake
92 development are usually the same. Terra Seismic currently provides earthquake prediction for 25 key earthquake
93 prone areas. Successfully detected approximately 90% of major earthquakes in the past 50 years.

94 3 Aftershock Predict based on Convolution Neural Networks

95 4 Global Journal of Science Frontier Research (H) XXIII Issue 96 VI Version I Year 2023

97 III. Proposed Method

98 5 IV. Experiment and Results

99 The data is from China Earthquake Networks Center and National Seismological Science Data Center (<http://data.earthquake.cn>). We selected the seismic phase data block DPB from the Qinghai Maduo 7.9
100 magnitude earthquake phase dataset on May 22, 2021 at 02:04. Original data shows in figure4. There are 1351
101 recorders. Training performance shows as figure 3.

103 **6 Aftershock Predict based on Convolution Neural Networks**
104 **7 Global Journal of Science Frontier Research (H) XXIII Issue**
105 **VI Version I Year 2023**

106 **8 © 2023 Global Journals**

107 The above literature shows that aftershocks can be predicted. Neural networks are the most suitable method to
108 establish corresponding prediction models. Seismic phase refers to seismic wave groups with different properties or
109 propagation paths displayed on seismic maps. Various seismic phases have different characteristics. Specifically, in
110 terms of arrival time, waveform, amplitude, period, and particle motion mode. The seismic phase characteristics
111 are related to the source, propagation medium, and receiving instrument. These wave groups all have a certain
112 duration. The waveforms of different seismic phases overlap with each other, causing interference, resulting in
113 a complex pattern in the seismic map. One of the tasks of seismology is to analyze and explain the causes and
114 physical meanings of various seismic phases. Using various seismic phase characteristics to determine the basic
115 parameters of earthquakes, studying the mechanical properties of seismic sources, and exploring the internal
116 structure of the Earth.

117 Filter the raw data. Select 7 features. They are: Phase when the seismic phase arrives_Time, travel time
118 residual Resi, epicenter distance, station azimuth Azi, amplitude Amp, magnitude Mag_Val and Period. Due to
119 the fact that the dates are on the same day, only hours, minutes, and seconds are taken. For ease of operation,
120 subtract the initial time from the time and take the offset as the time characteristic value. Figure 5 From the
121 rendering, it can be seen that the built-in trainingdx training function has a large output value of the entire model,
122 resulting in significant errors that make the model unusable. In addition to output constraints and setting an
123 output upper limit, the training is good and the approximation effect is good. This indicates that the improved
124 constrained training dx training function can handle similar situations where the model output value is too large
125 or too small, resulting in better results.

126 Mean square error (MSE) is a measure that reflects the degree of difference between the estimator and the
127 estimated quantity. Let t be the overall parameter determined based on the sample \bar{x} . An estimator of $(\bar{x}-t)$ is
128 mathematical expectation of 2 . It is called the mean square error of the estimator t . It is equal to $\bar{x}^2 + b^2$,
129 where \bar{x}^2 and b are the variance and bias of t .

130 **9 Aftershock Predict based on Convolution Neural Networks**
131 **10 Global Journal of Science Frontier Research (H) XXIII**
132 **Issue VI Version I Year 2023**

133 Consistent estimation (or consensus estimation) is the standard for evaluating estimators in large samples. When
134 the sample size is not large, people tend to use small sample based evaluation criteria. In this case, variance is
135 used for unbiased estimation and mean square error is used for biased estimation.

136 Generally, when the sample size is fixed, the criterion used to evaluate the quality of a point estimation is
137 always a function of the distance between the point estimation and the true value of the parameter. The most
138 commonly used function is the square of the distance. Due to the randomness of the estimation, the expectation
139 of this function can be obtained, which is the mean square error given by the following equation:

140 **11 VI. Conclusions**

141 Predicting the duration of aftershocks is feasible on the premise that an earthquake has already occurred. In
142 different regions, aftershock warning mechanisms can be established based on the geological conditions of the
143 region. Expanding to larger regions and for a longer period of time, based on existing earthquakes, predicting
144 future earthquakes should also be feasible. This is the direction that this article strives to explore. Earthquake
145 prediction is not the goal. The goal of this study is to provide data support for earthquake relief. In the event
146 of an earthquake, minimize personnel and property damage as much as possible.

147 In future research, we will delve deeper into the use of deep learning algorithms and construct new aftershock
148 prediction models using typical residual models. Fully utilize all parameters in seismic phase data to make
149 detailed predictions of aftershocks. ¹

¹ © 2023 Global Journals

Figure 1: Figure 1 :

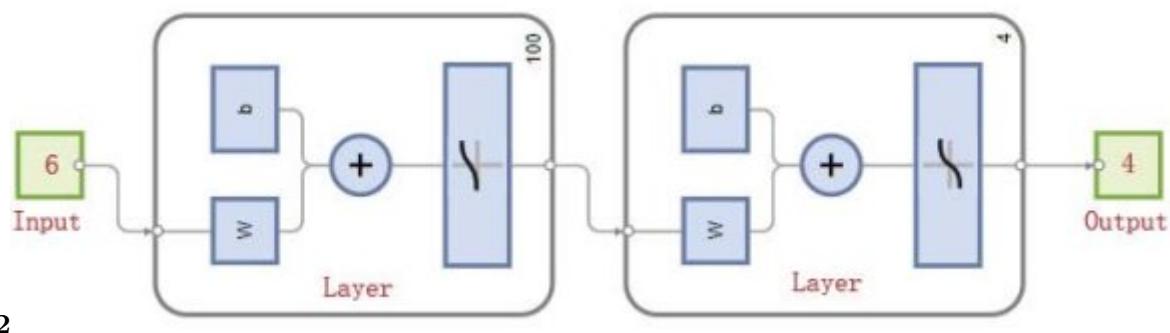


Figure 2: Figure 2 :

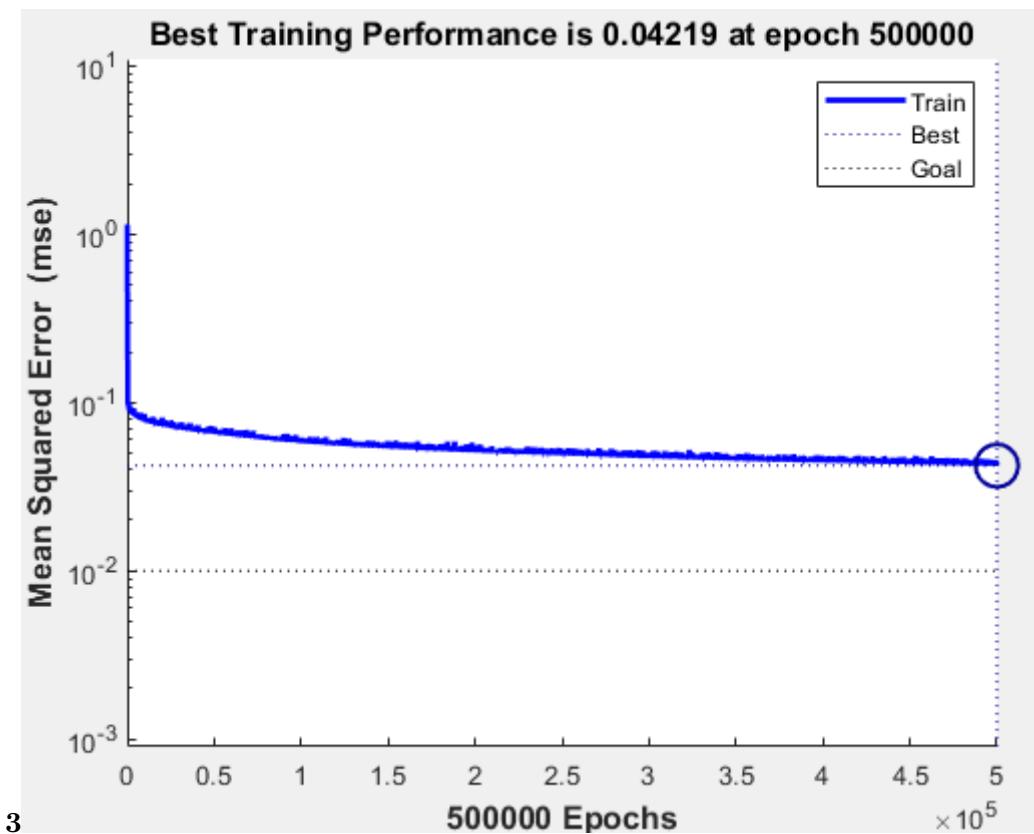
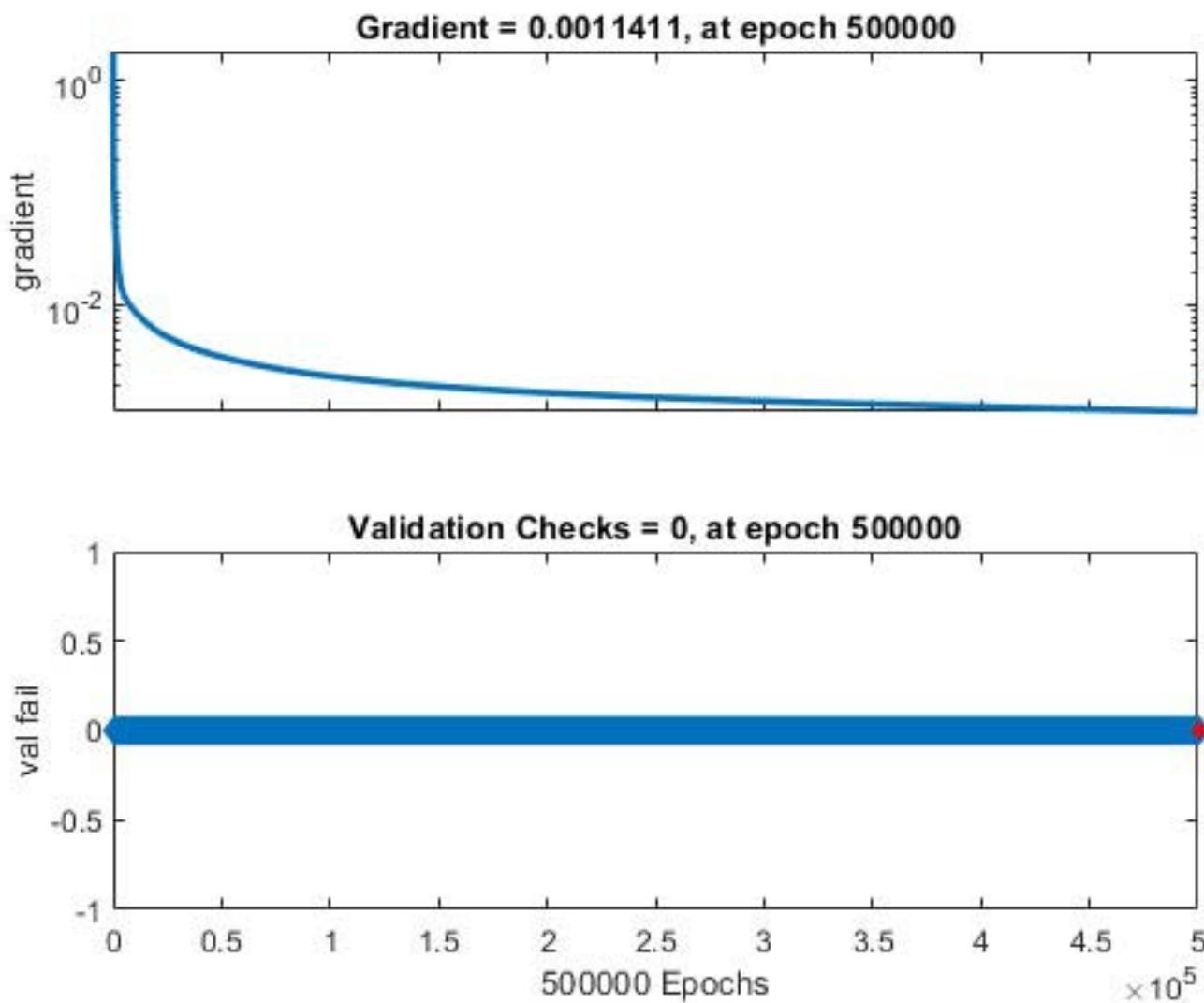


Figure 3: Figure 3 :



4

Figure 4: Figure 4 .

	A	B	C	D	E	F	G
1	02:05:46.10	2.4	6.1	341	3837	11.2	7.4
2	02:05:46.10	2.4	6.1	341	3837	11.2	7.4
3	02:05:46.10	2.4	6.1	341	2971	13.5	
4	02:05:46.10	2.4	6.1	341	2504	7.2	7.4
5	02:05:46.10	2.4	6.1	341	25	1.4	
6	02:05:46.10	2.4	6.1	341	22.3	1.6	6.4
7	02:07:30.00	4.3	6.1	341	22.3	1.6	
8	02:06:06.00	4.3	6.1	341	22.3	1.6	
9	02:06:06.00	4.3	15.1	56	8641	20.9	8
10	02:06:06.00	4.3	15.1	56	4891	19.6	
11	02:06:06.00	4.3	15.1	56	3048	19.1	7.9
12	02:10:57.80	4.7	15.1	56	3048	19.1	
13	02:10:46.40	0.6	15.1	56	3048	19.1	
14	02:10:39.30	3.5	15.1	56	3048	19.1	
15	02:07:53.60	-0.5	15.1	56	3048	19.1	
16	02:07:46.60	-1.9	15.1	56	3048	19.1	
17	02:07:46.60	-1.9	16.4	294	4294	17.1	7.8
18	02:07:46.60	-1.9	16.4	294	3972	15.8	
19	02:07:46.60	-1.9	16.4	294	1781	17.1	7.9
20	02:11:11.50	5.2	16.4	294	1781	17.1	

Figure 5: Figure 5 :

	Phase_time	Resi	Distance	Azi	Amp	Mag_val	Period_val	Period
1	186.16	2.4	6.1	341	3837	7.4	3	11.2
2	186.16	2.4	6.1	341	3837	7.4	3	11.2
3	186.16	2.4	6.1	341	2504	7.4	2	7.2
4	186.16	2.4	6.1	341	22.3	6.4	1	1.6
5	246.06	4.3	15.1	56	8641	8	4	20.9
6	246.06	4.3	15.1	56	3048	7.9	3	19.1
7	386.66	-1.9	16.4	294	4294	7.8	3	17.1
8	386.66	-1.9	16.4	294	1781	7.9	3	17.1
9	751.56	5.2	16.4	294	70	7.3	2	5.4
10	751.56	5.2	16.4	294	6.3	6.9	1	1.2
11	442.56	-2.8	15.2	64	82	6	4	20.1
12	442.56	-2.8	15.2	64	728	7.2	3	14
13	393.46	-4.7	15.2	64	26.9	6.6	2	9
14	393.46	-4.7	15.2	64	0.2	5.3	1	1.7
15	386.36	-2.3	10.1	338	4333	7.6	3	13.5
16	386.36	-2.3	10.1	338	2823	7.9	3	14.7
17	386.36	-2.3	10.1	338	53.6	7	3	11.5
18	386.36	-2.3	10.1	338	0.6	6.2	1	0.9
19	278.46	-2.4	24.7	54	2558	7.9	3	14.2

Figure 6: Figure 6 :

7

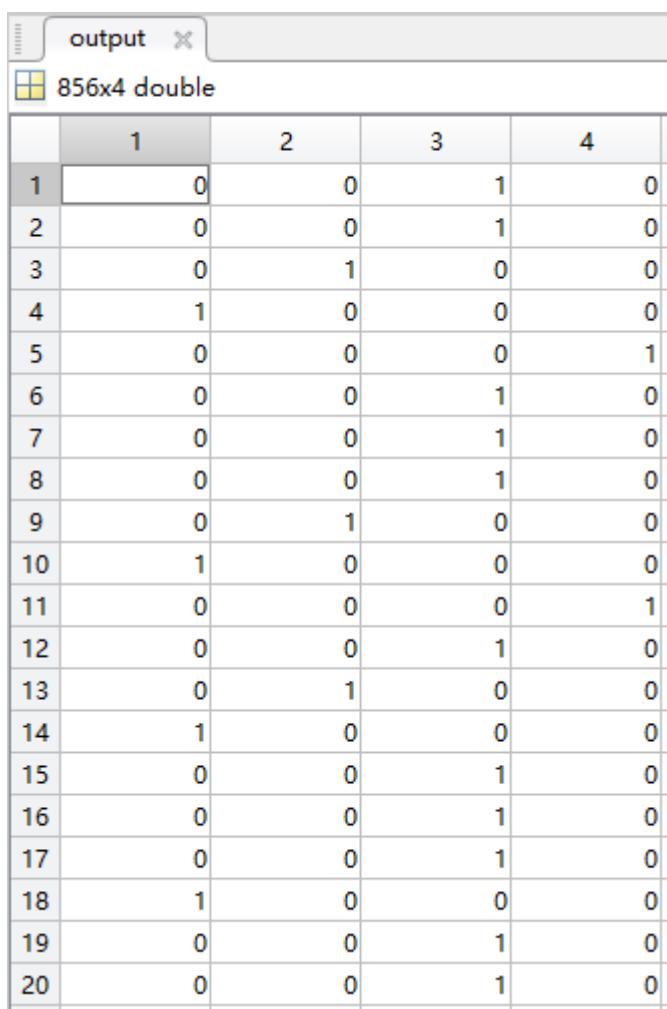
	1	2	3	4	5	6	7	8	9	10	11	12
1	-0.8429	-0.8429	-0.8429	-0.8429	-0.7923	-0.7923	-0.6736	-0.6736	-0.3656	-0.3656	-0.6264	-0.6264
2	0.2043	0.2043	0.2043	0.2043	0.4086	0.4086	-0.2581	-0.2581	0.5054	0.5054	-0.3548	-0.3548
3	-0.9971	-0.9971	-0.9971	-0.9971	-0.9912	-0.9912	-0.9903	-0.9903	-0.9903	-0.9903	-0.9911	-0.9911
4	0.9044	0.9044	0.9044	0.9044	-0.6985	-0.6985	0.6400	0.6400	0.6400	0.6400	-0.6535	-0.6535
5	-0.7923	-0.7923	-0.8645	-0.9988	-0.5321	-0.8350	-0.7676	-0.9036	-0.9962	-0.9997	-0.9956	-0.9606
6	0.2222	0.2222	0.2222	-0.3333	0.5556	0.5000	0.4444	0.5000	0.1667	-0.0556	-0.5556	0.1111

Figure 7: Figure 7

78

	1	2	3	4	5	6	7
1	186.1600	2.4000	6.1000	341	3837	7.4000	3
2	186.1600	2.4000	6.1000	341	3837	7.4000	3
3	186.1600	2.4000	6.1000	341	2504	7.4000	2
4	186.1600	2.4000	6.1000	341	22.3000	6.4000	1
5	246.0600	4.3000	15.1000	56	8641	8	4
6	246.0600	4.3000	15.1000	56	3048	7.9000	3
7	386.6600	-1.9000	16.4000	294	4294	7.8000	3
8	386.6600	-1.9000	16.4000	294	1781	7.9000	3
9	751.5600	5.2000	16.4000	294	70	7.3000	2
10	751.5600	5.2000	16.4000	294	6.3000	6.9000	1
11	442.5600	-2.8000	15.2000	64	82	6	4
12	442.5600	-2.8000	15.2000	64	728	7.2000	3
13	393.4600	-4.7000	15.2000	64	26.9000	6.6000	2
14	393.4600	-4.7000	15.2000	64	0.2000	5.3000	1
15	386.3600	-2.3000	10.1000	338	4333	7.6000	3
16	386.3600	-2.3000	10.1000	338	2823	7.9000	3
17	386.3600	-2.3000	10.1000	338	53.6000	7	3
18	386.3600	-2.3000	10.1000	338	0.6000	6.2000	1
19	278.4600	-2.4000	24.7000	54	2558	7.9000	3
20	278.4600	-2.4000	24.7000	54	1446	8	3

Figure 8: Figure 7 :Figure 8 :



The image shows a screenshot of a MATLAB workspace window. The window title is "output" and the data type is "856x4 double". The matrix contains 20 rows and 4 columns. The columns are labeled 1, 2, 3, and 4. The data is as follows:

	1	2	3	4
1	0	0	1	0
2	0	0	1	0
3	0	1	0	0
4	1	0	0	0
5	0	0	0	1
6	0	0	1	0
7	0	0	1	0
8	0	0	1	0
9	0	1	0	0
10	1	0	0	0
11	0	0	0	1
12	0	0	1	0
13	0	1	0	0
14	1	0	0	0
15	0	0	1	0
16	0	0	1	0
17	0	0	1	0
18	1	0	0	0
19	0	0	1	0
20	0	0	1	0

Figure 9:

11 VI. CONCLUSIONS

	1	2	3	4	5	6	7	8
1	657.3600	-4.3000	25.9000	58	1033	7.8000	3	3
2	1.0559e+03	2.6000	25.9000	58	34.5000	7.1000	2	2
3	1.0559e+03	2.6000	25.9000	58	0.2000	5.5000	1	1
4	588.1600	1.4000	27.6000	56	3125	7.9000	3	3
5	588.1600	1.4000	27.6000	56	1669	8.1000	3	3
6	645.0600	-4.5000	27.6000	56	9.2000	6.8000	1	1
7	645.0600	-4.5000	27.6000	56	0.2000	5.6000	1	1
8	641.8600	-0.9000	17.3000	93	5285	7.9000	3	3
9	641.8600	-0.9000	17.3000	93	5267	8.1000	3	3
10	765.8600	-0.8000	17.3000	93	45.9000	7.1000	1	2
11	765.8600	-0.8000	17.3000	93	0.7000	5.6000	1	1
12	454.6600	-1.7000	15.9000	107	5563	7.9000	3	3
13	454.6600	-1.7000	15.9000	107	4185	8	3	3
14	697.9600	3.3000	15.9000	107	36.2000	7.1000	1	2
15	697.9600	3.3000	15.9000	107	1.1000	6	1	1
16	398.1600	-0.6000	22.4000	47	5769	8.1000	3	3
17	398.1600	-0.6000	22.4000	47	2591	8.3000	3	3
18	955.5600	2.1000	22.4000	47	34.9000	7.2000	1	1
19	955.5600	2.1000	22.4000	47	1.8000	6.4000	1	1
20	553.0600	-0.2000	8.6000	159	8067	7.6000	4	4

Figure 10: Figure 9 :

150 [Gualberto and Francisco ()] 'A sensitivity study of seismicity indicators in supervised learning to improve
151 earthquake prediction'. A C Gualberto , M Francisco , AM , JorgeR . *Knowledge-based systems* 2016. 101 (C)
152 p. .

153 [Gitis et al. ()] *Analyzing The Performance Of Gps Data For Earthquake Prediction* [J], *Remote sensing*, Valeri
154 Gitis , Alexander Derendyaev , Konstantin N Petrov . 2021. 13 p. 1842.

155 [Sehrish et al. ()] 'BAT-ANN based earthquake prediction for Pakistan region'. Saba Sehrish , Faraz Ahsan ,
156 Sajjadmohsin . *Soft computing* 2017. 21 (19) p. .

157 [Cattania and Segall ()] 'Crack Models of Repeating Earthquakes Predict Observed Moment-Recurrence Scaling'.
158 C Cattania , P Segall . *Journal of geophysical research. Solid earth* 2019. 124 (1) p. .

159 [Rui et al.] 'Dlep: A Deep Learning Model For Earthquake Prediction'. L Rui , L Xiaobo , L Shuowei , Y Haipeng
160 , Q Jianfeng , Z Lei . *IEEE International Joint Conference on Neural Network*, 2020 p. .

161 [Qianlong et al. ()] 'Earthquake Prediction based on Spatio-Temporal Data Mining: An LSTM Network
162 Approach'. W Qianlong , G Yifan , Y Lixing , L Pan . *IEEE Transactions on Emerging Topics in Computing*
163 2020. 8 (1) p. .

164 [Li and Zhou ()] 'Laboratory Earthquake Prediction Of Granite'. Chang-Qing Li , Xiao-Ping Zhou . *Tribology
165 International* 2021. p. 160.

166 [Berhich et al. ()] 'Lstm-Based Models For Earthquake Prediction'. Asmae Berhich , Fatima-Zahra Belouadha ,
167 Mohammed Issam Kabbaj . *International Conference on Networking*, 2020. 46 p. 7.

168 [Oleg and Andrew ()] Elshin Oleg , Tronin Andrew , A . *Global Earthquake Prediction Systems, arXiv preprint
169 arXiv*, 2020, 2003(07593).

170 [Molchan et al. ()] 'On some methods for assessing earthquake predictions'. G Molchan , L Romashkova , A
171 Peresan . *Geophysical journal international* 2017. 210 (3.0) p. .

172 [Prescott ()] 'Pre-earthquake processes: a multidisciplinary approach to earthquake prediction studies'. William
173 H Prescott . 61.0(16): 2080.0-2082.0. *International geology review* 2019.

174 [Helene et al. ()] 'Stigma In Science: The Case Of Earthquake Prediction'. J Helene , R Tiziana , Caroline B
175 Cliodhna , O . *Disasters* 2018. 42 (1) p. .

176 [Danijel et al. ()] 'The Collaboratory for the Study of Earthquake Predictability: Achievements and Priorities'.
177 S Danijel , M W Warner , M Thomas , H J Yoshihiko , O David , D J Sum , M David , A R Matthew , C G
178 Naoshi , H Maria , L Philip , J M , AnneS , MatteoT , Stefan W Jeremy , D Z Jiancang , Z . *Seismological
179 Research Letters* 2018. 89 (4) p. .