

CrossRef DOI of original article:

1 Bioaccessibility of Principal Health-Promoting Compounds in 2 Broccoli 'Parthenon' and Savoy Cabbage 'Dama'

3 María Fernanda Fernández-León

4 Received: 1 January 1970 Accepted: 1 January 1970 Published: 1 January 1970

5

6 **Abstract**

7 Currently there is a general concern among consumers to purchase goods increasingly healthy
8 that not only provide the necessary nutrients, but also beneficial compounds with functional
9 properties and antioxidant activity. Because of this, there has been an increased consumption
10 of vegetables of the Brassicaceae family, especially brassicas. Thus, in this research work, two
11 types of brassicas (broccoli and Savoy cabbage) were evaluated and it was found that broccoli
12 had a higher content of functional compounds. But functional compounds are absorbed and
13 used in different ways when they are digested, so besides knowing the content of these
14 compounds in foods it is necessary to know their bioavailability, which will help meet the
15 health properties of food to optimize the diet and to establish nutritional recommendations.

16

17 **Index terms**— Brassicas, bioactive compounds, bioaccessibility, in vitro, gastrointestinal digestion

18 **1 I. Introduction**

19 In recent years, increasing attention has been paid to the role of diet in human health. Several epidemiological
20 studies have indicated that a high intake of plant products is associated with a reduced risk of several chronic
21 diseases, such as atherosclerosis and cancer (Xiao and Bai, 2019). These beneficial effects have been partly
22 attributed to the compounds, which possess antioxidant activity. The major antioxidants of vegetables are
23 vitamins C, carotenoids, chlorophylls, phenolic compounds and glucosinolates ??Xiao et al., 2019).

24 Those antioxidants may act together to reduce reactive oxygen species level, more effectively than single dietary
25 antioxidants, because they can act as synergists ??Bañas et al., 2017).

26 Brassica is a wide plant family that include different genus of cultivated plants, collectively called Brassica
27 vegetables. Within the Brassica oleracea species, various types of cabbages are comprised (white, red,
28 Savoy, Chinese), cauliflower, broccoli, Brussels sprouts and kale. These vegetables possess antioxidant and
29 anticarcinogenic properties (Xiao and Bai, 2019).

30 However, when studying the role of bioactive compounds in human health, their bioavailability is not always
31 well known. Thus, an important area of research about brassicas and cancer prevention is a better understanding
32 of the bioavailability of bioactive compounds after human consumption (Clarke et al., 2011).

33 The concept of a compound bioaccessibility has been defined as the fraction released from the food matrix in
34 the gastrointestinal tract that becomes available for absorption (Carbonell-Capella et al., 2014).

35 Thus, the objective of this research work was designed to identify and quantify the principal healthpromoting
36 compounds of two brassicas, broccoli 'Parthenon' and Savoy cabbage 'Dama'. In addition, a comparison study
37 was completed to assess the bioaccessibility of these compounds after the process of intestinal digestion in vitro.
38 By the determination of bioaccessibility, the consumers can have information about nutritional and functional
39 efficacy of food products, providing valuable information in order to select the appropriate portion and source of
40 food matrices.

41 **2 II. Materials and Methods**

42 **3 a) Plant Material**

43 Broccoli (*Brassica oleracea* L. var. *italica* Plenck) 'Parthenon' and Savoy cabbage (*Brassica oleracea* L. var.
44 *sabauda*) 'Dama' were used in this study as they had shown the best characteristics in previous studies I
45 (Fernández-León et al., 2012; Fernández-León et al., 2014). A total of 20 fresh head samples were analyzed
46 for each cultivar of broccoli and Savoy cabbage. The plants were harvested and rapidly transported to the
47 laboratory. Savoy cabbage leaves were randomly selected external, middle and internal leaves from the cabbage
48 heads and broccoli. Both broccoli and Savoy cabbage were processed separately, performing on the same day in
49 *in vitro* digestion of both brassicas.

50 **4 b) Vitamin C Determination**

51 Ascorbic acid and dehydroascorbic acid (DHAA) contents were determined as described by Zapata and Dufour
52 (1992) with some modifications (Gil et al., 1999). The HPLC analysis was achieved after derivatisation of DHAA
53 into the fluorophore 3-(1, 2dihydroxyethyl) furol ??3, 4-b] quinoxaline-1-one (DFQ), with 1, 2-phenylenediamine
54 dihydrochloride (OPDA). Samples of 20 μ L were analysed with an Agilent 1100 Series HPLC from Agilent
55 Technologies (Madrid, Spain). Vitamin C was quantified as the sum of ascorbic and dehydroascorbic acid, and
56 the results were expressed as mg ascorbic acid/100 g of fresh weight (FW).

57 **5 c) Carotenoid Pigments Determination**

58 Carotenoid pigments were determined by HPLC according to Mínguez-Mosquera and Hornero-Méndez (1993)
59 method slightly modified by García et al. (2007), from the saponified acetone extracts of broccoli and Savoy
60 cabbage plants. The pigments were quantified by external standard calibration, and results were expressed as
61 mg of β -carotene and mg of lutein/100 g FW (González-Gómez et al., 2011). The total carotenoids content was
62 quantified as the sum of β -carotene and lutein, and the results were expressed as mg β -carotene /100 g FW.

63 **6 d) Chlorophyll Pigments Determination**

64 Chlorophyll A and B contents were determined using multivariate calibration by means of Partial Least Squares
65 (PLS) (Fernández-León et al., 2010). Briefly, acetone chlorophyll extracts were obtained from the different
66 broccoli and Savoy cabbage samples. After that, UV spectrum of each sample was collected for the range 600-700
67 nm and the amount of chlorophylls A and B was determined by applying a PLS methodology optimized by means
68 of a set of chlorophyll standards. The results were expressed as mg chlorophyll A or B per 100 g of fresh weight,
69 the total chlorophyll content was quantified as the sum of chlorophyll A and B, and the results were expressed
70 as mg chlorophyll A/100 g FW.

71 **7 e) Phenolic Compounds Determination**

72 The extraction of phenolic compounds was performed according to Bernalte et al. (2007) and Lima et al. (2005).
73 After acidic hydrolysis, the aglycons of individual phenolic compounds were chromatographic determined using a
74 high-performance liquid chromatography instrument coupled to an Ion Trap mass spectrometer (Varian 500-MS,
75 Varian Ibérica S.L., Spain). For aglycons identification, the mass spectrometer was tuned by direct infusion
76 of standards, producing maximum abundant precursor ions and fragment ions signals during MS/MS. Thus,
77 three derivates of phenolic acids (gallic acid, chlorogenic acid and sinapic acid) and two flavonoids (quercetin and
78 kaempferol) were identified. For the quantification, standard calibration curves were made with these compounds
79 using these mass spectrometric conditions. Results were expressed in mg/100 g FW, for each compound.

80 **8 f) Simulated Gastrointestinal Digestion**

81 To study the bioaccessibility of healthpromoting compounds, 6 samples of broccoli and Savoy cabbage were
82 subjected to *in vitro* digestion process. *In vitro* digestion was performed for each sample, thus obtaining 6
83 independent extracts for each digested brassica, $n = 6$. The employed method simulates the gastric and intestinal
84 phases of the human gastrointestinal digestion process.

85 **9 g) Gastric Phase**

86 Simulated gastric fluid (SGF) was prepared according to the USP method (Pharmacopeia, 2000). The SGF
87 contained 0.2g pepsin and 0.125g sodium chloride in deionised water to give a final volume of 62.5ml at pH 1.5.
88 Crushed sample (broccoli or Savoy cabbage) (10g) was added 50 ml of the SGF and the mixture was stirred
89 for 20 min at pH 2.2, 37 °C.

90 **10 h) Intestinal Phase**

91 The pH of the mixture was then adjusted to pH 6.5, to inactivate pepsin (Fruton, 1971) and it was added 50 mL
92 simulated intestinal fluid (SIF). It was kept under stirring for 20 min at pH 6.5 and 37 °C.

93 SIF was prepared according to Lee et al. (2003) in PBS buffer (phosphate buffered saline), 100 mL 0.1 M of
94 this buffer at pH 3.4 was added 20 mg of pancreatin, 5 mg lipase, 10 mM cholic acid and 10 mM deoxycholic
95 acid.

96 Once digested, the samples were centrifuged at 14,000 rpm for 10 min at 5 °C. In the supernatant obtained
97 after centrifugation, the analysis of biocompounds was performed to assess bioaccessibility. To calculate the
98 percentage of bioaccessibility of health-promoting compounds were considered the initial content of these in the
99 fresh samples (crude) and after digestion (bioaccessibility). level. Data were expressed as means ± SD of six
100 independent analysis and samples. Mean values were analyzed by Student's test at p<0.05 and p<0.01.

101 11 III. Results and Discussion

102 The in vitro biological activity of any functional or bioactive compound will always be conditioned by its digestive
103 stability, the extent of its absorption and the metabolism suffered. Therefore, studies of bioavailability and
104 metabolism are fundamental for the knowledge of the concentrations at which these compounds are bioavailable
105 and exert their biological activity (Kroon et al., 2004). Thus, an in vitro digestion study of two types of brassicas,
106 broccoli and Savoy cabbage, was carried out.

107 Table 1 shows the average values of the bioactive compounds content, of broccoli and Savoy cabbage
108 respectively, before and after in vitro digestion. 1 Expressed as mg/100 g fresh weight.

109 2 Expressed as mg ascorbic acid/100 g fresh weight. 3 Expressed as mg ?-carotene/100 g fresh weight. 4
110 Expressed as mg chlorophyll A/100 g fresh weight. 5 Expressed as mg chlorogenic acid/100 g fresh weight. 6
111 Expressed as mg quercetin/100 g fresh weight.

112 (***) means significantly differences among the values (p<0.01).

113 12 a) Vitamin C

114 The vitamin C content, expressed as mg ac. ascorbic/100 g FW, corresponds to the sum of the ascorbic and
115 dehydroascorbic acids (oxidation product of the ascorbic acid), with ascorbic acid being the majority in both
116 brassicas (approximately 80-85%).

117 The highest vitamin C content was obtained in the crude broccoli (76.7 vs 61.9 mg ascorbic acid/100 g
118 significantly within the brassica genus, as well as between and within its subspecies (Podsedek, 2007;Xiao and
119 Bai, 2019).

120 After in vitro digestion, the ascorbic acid and vitamin C content were also higher in broccoli (17.1 and 20.7 mg
121 ascorbic acid/100 g FW respectively) than in digested Savoy cabbage (11.2 and 15.1 mg ascorbic acid/100 g FW).
122 On the contrary, the bioaccessible content of dehydroascorbic acid was significantly higher in Savoy cabbage.

123 Figure 1 shows the bioaccessibility percentages of ascorbic acid, dehydroascorbic acid and vitamin C in broccoli
124 and Savoy cabbage. The percentages of ascorbic and dehydroascorbic acid were significantly different between
125 the two brassicas under study, while for the vitamin C percentage no significant differences were found. The
126 oxidized form of the ascorbic acid, dehydroascorbic acid, is better absorbed, since at physiological pH it is not
127 ionized, it is less hydrophilic and, therefore, it is able to cross better the cell membranes. This is the reason
128 why the bioaccessibility percentage of dehydroascorbic acid is superior to that of ascorbic acid for both brassicas
129 studied (Figure 1).

13 b) Carotenoids

130 It was observed that both, ?-carotene and lutein, were significantly more abundant in broccoli (0.770 and 0.560
131 mg/100 g FW, respectively) than in Savoy cabbage (0.340 and 0.170 mg/100 g FW, respectively), broccoli with
132 56% more ?-carotene and 70% more lutein than Savoy cabbage. Consequently, total carotenoids content was
133 approximately 62% higher in Broccoli 'Parthenon' than in Savoy cabbage 'Dama' (Table 1). The data obtained
134 for these compounds were in the range of concentrations found in other studies (Singh et al., 2007, Fernández-León
135 et al., 2014).

135 Of the two carotenoids identified, it was ?carotene that showed the highest bioaccessible content after in vitro
136 digestion for broccoli (0.050 mg ?carotene/100 g FW). For Savoy cabbage, similar bioaccessible contents were
137 obtained for both carotenoids (0.010 mg/100 g FW) (Table 1).

138 Figure 2 shows the bioaccessibility percentages of ?-carotene, lutein and total carotenoids of broccoli and Savoy
139 cabbage. As observed, there are no FW in Savoy cabbage). Vitamin C content varies significant differences
140 between the two brassicas in the bioaccessibility percentage for lutein. Although starting from a higher initial
141 content in broccoli, the bioaccessibility percentage is statistically similar for both matrices. As can be seen in
142 Figure 2, the bioaccessibility percentage of the carotenoid compounds studied is low, not more than 6%. This
143 may be due to the fact that, although most of these pigments are stable at extreme heat and pH in the intact
144 tissues of plants, when extracted in isolation they oxidize rapidly due to the addition of oxygen over the double
145 bonds (Meléndez-Martínez et al., 2004). This could explain the critical loss of these compounds during in vitro
146 digestion.

147 Studies carried out by other authors show the high variability in the absorption of different carotenoids and the
148 significant differences in the bioavailability of these between fruits and vegetables. In general, the percentage of
149 bioavailability is higher in fruit, i. It is generally accepted that xanthophylls are more bioavailable than carotenes,

15 D) PHENOLIC COMPOUNDS

152 indicating that polarity is important about absorption (Ornelas-Paz et al., 2012). This can be seen in the results
153 obtained for Savoy cabbage, where, although starting from higher content of β -carotene (carotene) than lutein
154 (xanthophyll), a higher percentage of bioavailability is obtained for lutein than for β -carotene (Figure 2). Also,
155 in foods in which several carotenoids are present, such as brassicas, interactions may occur between them that
156 affect their bioavailability.

157 14 c) Chlorophylls

158 Chlorophyll A and chlorophyll B are genuine components of photosynthetic membranes and are present in a
159 3:1 ratio (Chen and Chen, 1993), as observed in this study (Table 1, crude values). The A:B chlorophyll ratio
160 may vary due to growth and environmental conditions (Lichtenthaler et al., 1982), and this ratio is considered a
161 quality parameter for green vegetables, such as the two brassicas under study.

162 Chlorophyll A was the majority pigment, with values of 8.79 mg chlorophyll A/100 g FW for broccoli and 2.17
163 mg chlorophyll A/100 g FW for Savoy cabbage, differing significantly, being in broccoli approximately 75% higher
164 than in Savoy cabbage (Table 1). The content of chlorophyll B was also higher in broccoli (3.02 mg chlorophyll
165 B/100 g FW) than in Savoy cabbage (0.820 mg chlorophyll B/100 g FW), in a proportion of approximately 73%
166 (Table 1).

167 The results obtained for total chlorophyll content were similar to those found by our group in previous studies
168 (García et al., 2005 1). The bioaccessible content of chlorophyll A, as well as the total, were also significantly
169 higher in broccoli (0.160 and 0.240 mg chlorophyll A/100 g FW, respectively).

170 Figure 3 shows the bioaccessibility percentages of chlorophyll A, chlorophyll B and total chlorophyll for broccoli
171 and Savoy cabbage. The values are statistically higher for Savoy cabbage, with chlorophyll B having the highest
172 percentage of bioaccessibility (approximately 5%). This low percentage of bioavailability can be linked to the
173 alterations suffered by chlorophyll at acid pH, during the digestion processes. The main alteration experienced
174 in these conditions is the loss of the magnesium atom, forming the pheophytin, with an olivegreen color with
175 brown tones, instead of the bright green of chlorophyll. This loss of magnesium is produced by substitution by
176 two H + ions, and consequently, it is favored by the acid medium (Deschene et al., 1991;Zhuang et al., 1995).

177 It must be considered that vegetables are always acidic and that in thermal treatment acids are generally
178 released from vacuoles in the cells, which lower the pH of the medium, so that the temperature also affects this
179 alteration (Deschene et al., 1991;Zhuang et al., 1995). It is also known that chlorophyll B is somewhat more stable
180 than chlorophyll A at acid pH, as can be seen in the results obtained of greater bioavailability and, therefore, less
181 loss of chlorophyll B after in vitro digestion (Figure 3). Although the chlorophyll content was higher in broccoli,
182 both crude (not digested) and in the bioavailable fraction, the difference between the values in crude and after
183 gastrointestinal in vitro digestion was more significant, so it can be said that there were greater loss and lower
184 absorption of these compounds in broccoli than for Savoy cabbage.

185 It has not been possible to compare the results obtained in this work as there is no available literature referred
186 to the bioavailability of chlorophylls. It is known that the absorption of natural chlorophyll occurs practically
187 only at level of the small intestine due to its lipophilic character (Pérez-Gálvez and Minguez-Mosquera, 2007).

188 15 d) Phenolic Compounds

189 Broccoli exhibited a higher total content of phenolic acids and flavonoids, with values of 4.32 and 9.61 mg/100
190 g FW, respectively, being significantly different from those obtained for Savoy cabbage. While for 'Parthenon'
191 broccoli the content of total flavonoids was higher than total phenolic acids, for Savoy cabbage the values were
192 very similar and close to 3 mg/100 g FW (Table 1).

193 With respect to the individual phenolic compounds, three phenolic acids (gallic, chlorogenic and synapic acid)
194 and two flavonoids (quercetin and kaempferol) were quantified (Table 1). It was observed that the content
195 was significantly higher for broccoli, except for synapic acid, which showed a higher concentration in the Savoy
196 cabbage. The concentrations of phenolic acids and flavonoids for the brassicas under study were similar to those
197 found by USDA/ARS (2007) and by other authors (Vallejo et al., 2003a;Vallejo et al., 2003b;Koh et al., 2009).

198 The total phenolic acids and total flavonoids in the bioaccessible fraction of broccoli and Savoy cabbage, after
199 in vitro gastrointestinal digestion, are shown in Table 1.

200 The total content of phenolic acids in the bioaccessible fraction was higher in broccoli than in Savoy cabbage
201 (0.850 and 0.410 mg/100 g FW, respectively), as was the total content of flavonoids (3.89 and 0.790 mg/100 g
202 FW, respectively). Although the behavior in the content of these compounds was similar to that observed in
203 the undigested product, after in vitro gastrointestinal digestion the general trend was a decrease in the level of
204 total phenolic acids and total flavonoids, as observed by other authors for other food products (Gil-Izquierdo et
205 al., 2002;Pérez-Vicente et al., 2002;Vallejo et al., 2004). In the case of flavonoids, there are authors (Vallejo et
206 al., 2004) who indicate that this loss may be due to the fact that during pancreatic digestion compounds are
207 released (macromolecules such as proteins and fiber) capable of being associated with flavonoids thus preventing
208 their absorption.

209 Generally, phenolic compounds are relatively stable, but they can be degraded due to chemical, microbiological
210 and, above all, enzymatic oxidations by the action of the enzyme polyphenol oxidase (PPO), which as the
211 membranes deteriorate comes into contact with phenolic compounds and oxidizes them (Dixon, 2001). But this

212 enzyme is deactivated at pH lower than 2 and therefore, the oxidation reaction of the phenolic compounds is
213 slower. This may be the reason why the loss of these bioactive compounds after in vitro digestion was not as
214 pronounced as in the case of carotenoid and chlorophyll pigments, as pH=1.5 at the beginning of digestion would
215 favor no degradation of phenolic compounds in this step.

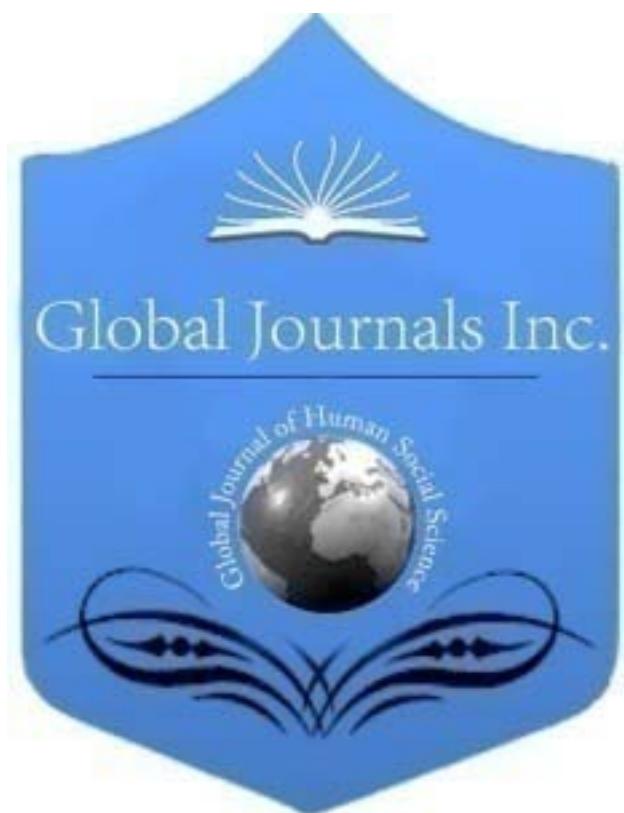
216 The individual phenolic acid with the highest bioaccessible content in broccoli was chlorogenic acid (0.350 mg
217 chlorogenic acid/100 g FW), followed by synapic acid and finally gallic acid, while in Savoy cabbage, synapic
218 acid exhibited the highest concentration (0.180 mg/100 g pf) after gastrointestinal digestion in vitro. Comparing
219 the two brassicas studied, broccoli 'Parthenon' presented the highest content of all individual phenolic acids in
220 the bioaccessible fraction. Regarding the flavonoids quercetin and kaempferol, the bioaccessible content was also
221 higher in broccoli, as was the case in the undigested sample. The most abundant individual flavonoid in broccoli,
222 after gastrointestinal digestion in vitro, was quercetin (2.64 mg quercetin/100 g FW) while in Savoy cabbage it
223 was kaempferol (0.460 mg kaempferol/100 g FW). Significantly Differences Among the Values (p<0.01)

224 Figure 4 shows the bioaccessibility percentages of total phenolic acids and total flavonoids. The total phenolic
225 acids presented a low percentage of bioaccessibility (less than 20%), being therefore the ones that had greater
226 losses after the in vitro gastrointestinal digestion, as previously reported by Vallejo et al. (2004).

227 However, the bioaccessibility percentage of total flavonoids was much higher than that obtained for total
228 phenolic acids, contrarily to other authors such as ??010), who found, general, that the bioavailability of
229 phenolic acids was greater than that of flavonoids, because the latter are compounds with more complex chemical
230 structures, with higher polymerization index and glycosylation, so their absorption in the small intestine is more
231 difficult, thus passing to the large intestine where most of the absorption occurs, mainly due to the fermentation
232 produced by the bacteria of the colonic microbiota.

233 Comparing the two brassicas studied, it was the broccoli 'Parthenon' that presented the highest percentage
234 of bioaccessibility both in the total phenolic acids and flavonoids (Figure 4). With respect to the individual
235 phenolic compounds, the synapic acid was the individual phenolic acid that presented the highest percentage of
236 bioaccessibility in broccoli and chlorogenic acid in Savoy cabbage, around 21 and 14% respectively, values similar
237 to those obtained by Vallejo et al. (2004) for the broccoli cultivar 'Marathon'.

238 It should be noted that although for broccoli chlorogenic acid was the single phenolic acid majority in the
239 bioavailable fraction (Table 1), it exhibited the lowest bioaccessibility percentage of the three individual phenolic
240 acids identified in this work (Figure 4). For Savoy cabbage, synapic acid was the majority in the bioavailable
241 fraction (Table ??), but its bioaccessibility percentage (Figure 4) was the lowest of the three individual phenolic
242 acids. Therefore, it can be said that for both chlorogenic acid in broccoli and synapic acid in Savoy cabbage, the
243 most significant losses occurred after in vitro gastrointestinal digestion, and therefore the lowest percentages of
244 bioaccessibility.


245 Concerning the bioaccessibility percentage of the flavonoids identified individually (Figure 4), quercetin
246 presented the highest value in both brassicas (41% for broccoli and 27% for Savoy cabbage). The fact that
247 in Savoy cabbage kaempferol was the most abundant in the bioavailable fraction (Table 1) and, however, the
248 one with the lowest percentage of bioaccessibility (Figure 4), The results obtained in this work for the phenolic
249 compounds studied individually (whether acids or flavonoids) are difficult to compare with others, as the data on
250 bioavailability provided by other studies are scarce and controversial. Thus, studies carried out on bioavailability
251 and metabolism of these compounds indicate that flavonoids are poorly absorbed in the small intestine as opposed
252 to phenolic acids. In most cases, flavonoids are present in foods in the form of more complex combinations
253 with sugars and aliphatic and aromatic organic acids, which substantially decreases their absorption in the
254 small intestine, producing the transit to the large intestine, where the microbiota of the colon metabolizes the
255 flavonoids naturally present in the food to give rise to simpler compounds, mainly derived from phenylacetic
256 acid and phenylpropionic acid (Selma et al., 2009), which are those that will be absorbed and metabolized by
257 the organism. However, this behavior has also been observed in some phenolic acids with or without complex
258 structure, and even the opposite has been observed for flavonoids such as quercetin, for which better absorption
259 has been seen when it is as glucoside than as aglycone (Manach et al., 2005).

260 16 IV. Conclusions

261 After in vitro digestion it was observed that, as in the crude (or undigested) product the content of functional
262 compounds was higher in 'Parthenon' broccoli than in 'Dama' Savoy cabbage. Regarding the percentage of
263 bioaccessibility, it was higher in 'Parthenon' broccoli for ascorbic acid, β -carotene and phenolic compounds, while
264 for chlorophyll A, chlorophyll B and the sum of both (total chlorophylls), as well as for dehydroascorbic acid, it
265 was higher in 'Dama' Savoy cabbage.

266 In general, and according to the data obtained in this research work, it can be said that the bioaccessibility
267 of the health-promoting compounds of 'Parthenon' broccoli were higher than those of 'Dama' Savoy cabbage
268 (except for chlorophyll pigments), and therefore broccoli would have a higher functional value. ¹

¹ Bioaccessibility of Principal Health-Promoting Compounds in Broccoli 'Parthenon' and Savoy Cabbage 'Dama'

1

Figure 1: Figure 1 :

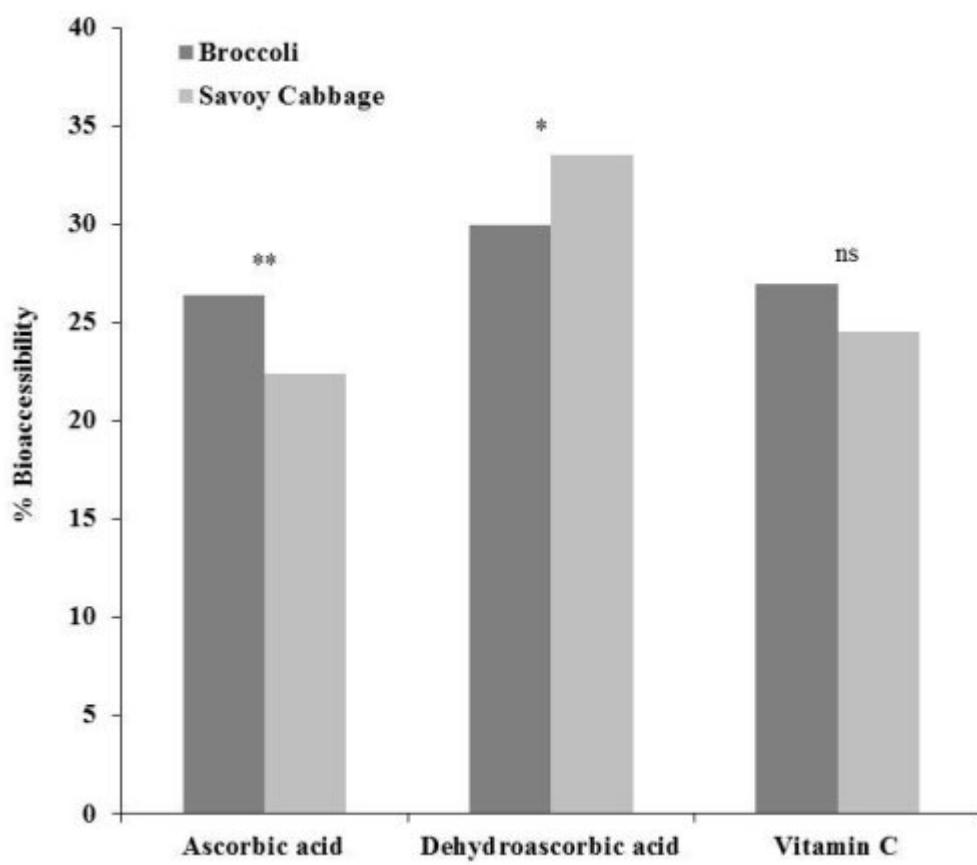


Figure 2:

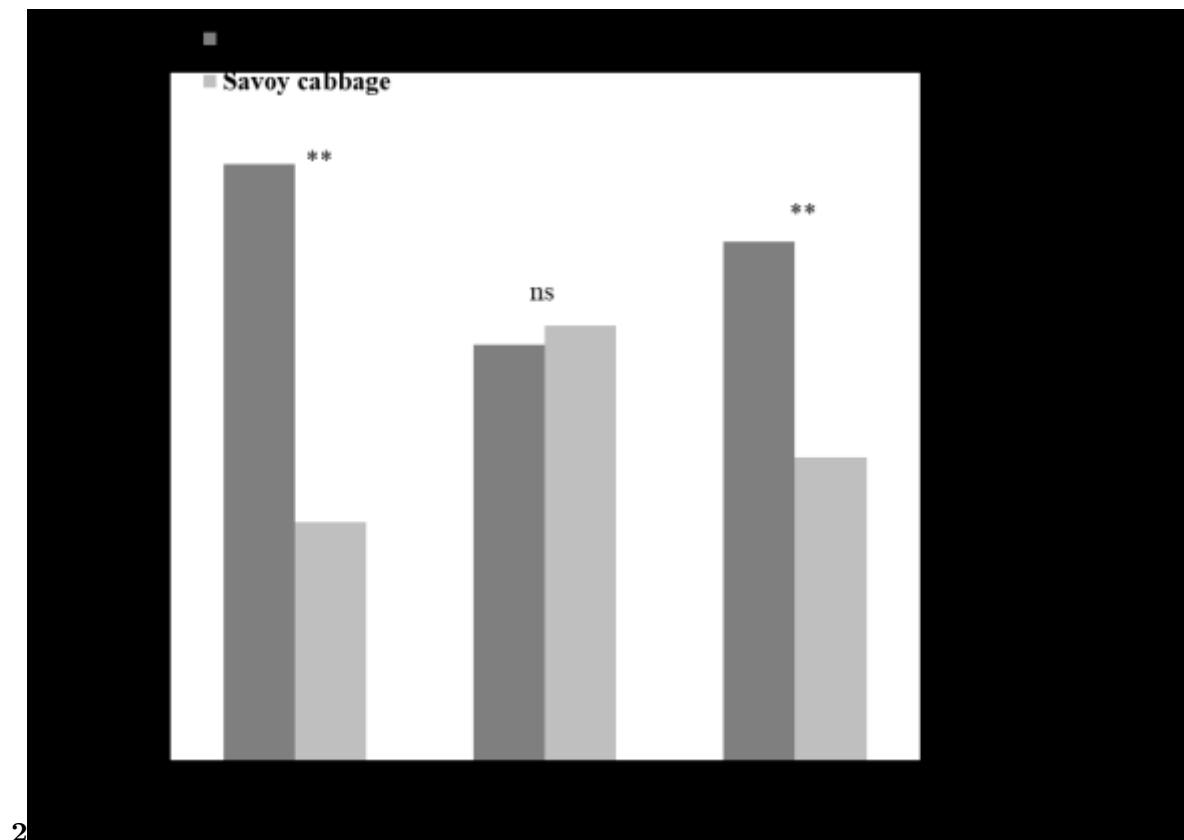


Figure 3: Figure 2 :

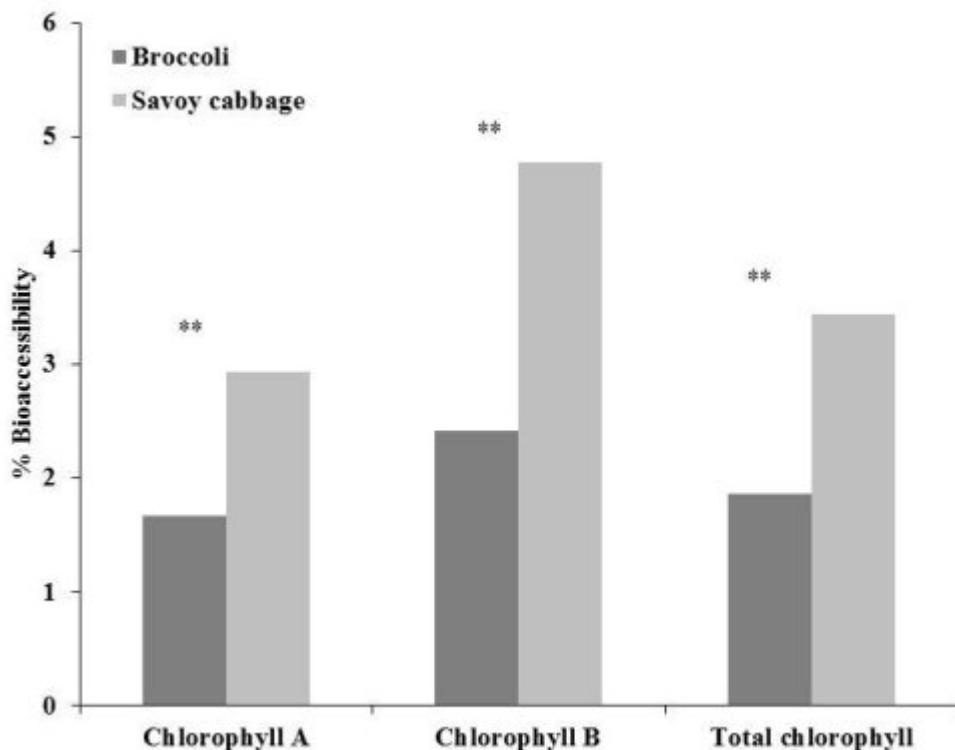


Figure 4:

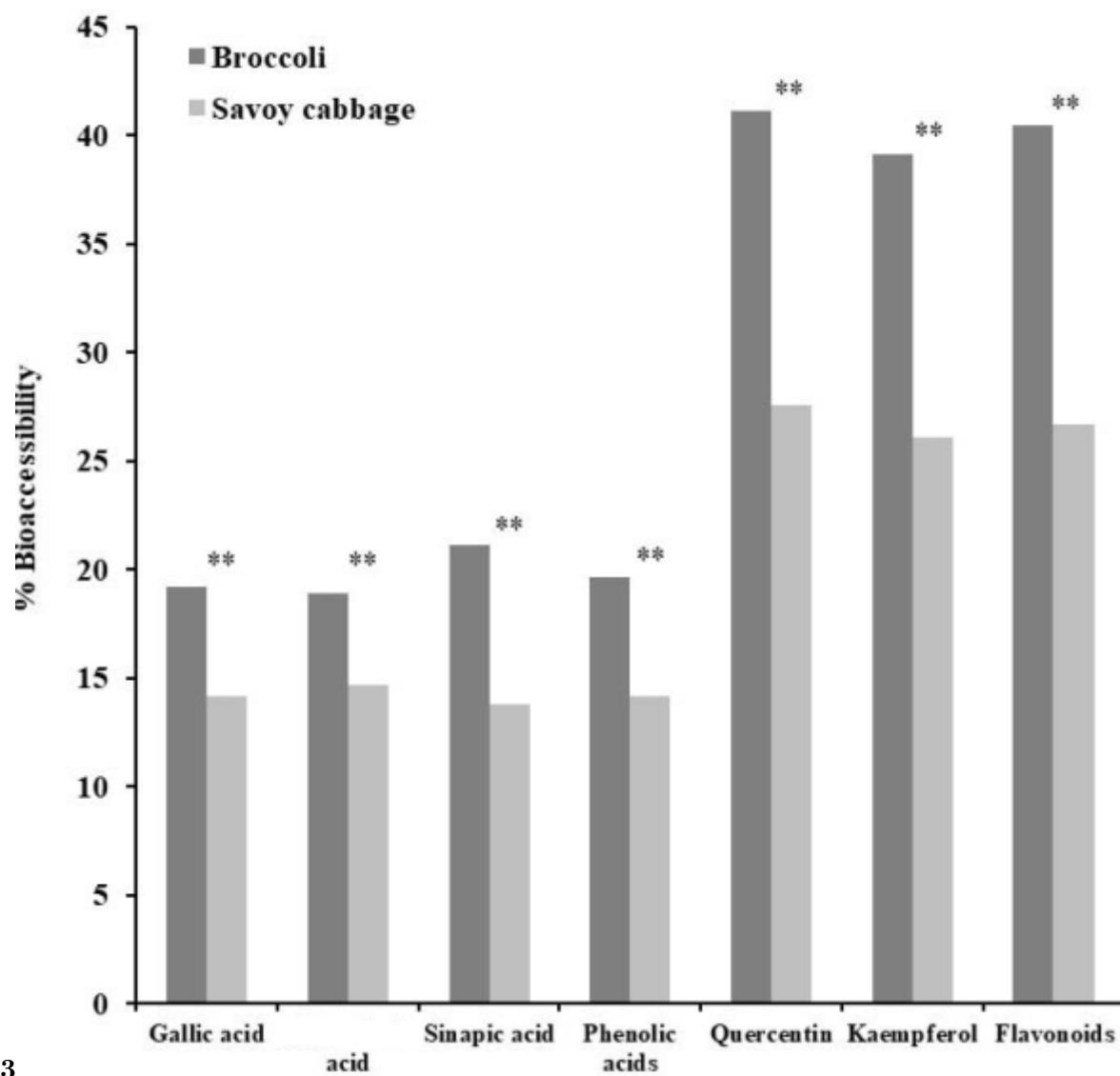


Figure 5: Figure 3 :

1

	Broccoli			Savoy cabbage		
	Crude	Digested	Significance	Crude	Digested	Significance
1 Ascorbic acid	64.7±2.34	17.1±1.01*		50.1±2.85	11.2±0.61	**
1 Dehydroascorbic acid	12.0±0.65	3.60±0.11*		11.8±0.76	3.94±0.18	**
2 Vitamin C	76.7±2.28	20.7±0.94*		61.9±3.54	15.1±0.69	**
1 ?-carotene	0.770±0.05	0.050±0.03	**	0.340±0.07	0.010±0.004	**
1 Lutein	0.560±0.06	0.030±0.01	**	0.170±0.04	0.010±0.003	**
3 Total carotenoids	1.33±0.03	0.080±0.04	**	0.510±0.06	0.020±0.01	**
1 Chlorophyll A	8.79±1.90	0.160±0.05	**	2.17±0.29	0.060±0.01	**
1 Chlorophyll B	3.02±0.50	0.080±0.05	**	0.82±0.08	0.040±0.01	**
4 Total chlorophyll	11.8±1.60	0.240±0.09	**	2.99±0.37	0.100±0.01	**
1 Gallic acid	1.26±0.06	0.240±0.01	**	0.69±0.06	0.100±0.01	**
1 Chlorogenic acid	1.83±0.04	0.350±0.01	**	0.94±0.06	0.140±0.01	**
1 Sinapic acid	1.23±0.04	0.260±0.03	**	1.28±0.04	0.180±0.004	**
5 Total phenolic acids	4.32±0.07	0.850±0.04	**	2.91±0.07	0.410±0.02	**
1 Quercetin	6.42±0.25	2.64±0.07*		1.19±0.05	0.330±0.01	**
1 Kaempferol	3.19±0.08	1.25±0.03*		1.75±0.06	0.460±0.01	**
6 Total flavonoids	9.61±0.26	3.89±0.08*		2.95±0.10	0.790±0.03	**

Figure 6: Table 1 :

Figure 7:

269 .1 Acknowledgements

270 Part of this research has been funded by Junta de Extremadura and FEDER (Project GR10006) and Project
271 "Red de Investigación Transfronteriza Extremadura-Centro-Alentejo (RITECA-II)".

272 .2 References Références Referencias

273 1. Baenas, N., Gómez-Jodar, I., Moreno, D.A., ??arcía

274 [García et al. ()] , M I García , M Lozano , M C Ayuso , M J Bernalte , M Pacheco , P Calvo ,
275 M A Martínez , R Benítez-Donoso , C Campillo . 2005. 5 p. .

276 [Fernández-León et al. ()] , A M Fernández-León , M Lozano , D González , M C Ayuso , M F Fernández-León
277 . 2014.

278 [Lichtenthaler et al. ()] 'Adaptation of chloroplast-ultrastructure and chlorophyll-protein levels to high light and
279 low light growth conditions'. H K Lichtenthaler , G Kuhn , U Prenzel , C Buschmann , D Meier . *Zeitschrift
280 für Naturforschung -Section C: Biosciences* 1982. 37 p. .

281 [García et al. ()] 'Agronomic characteristics and carotenoid content of five Bola-type paprika red pepper
282 (Capsicum annuum L.) cultivars'. M I García , M Lozano , V Montero De Espinosa , M C Ayuso , M J
283 Bernalte , M C Vidal-Aragón , M M Pérez . *Scientia Horticulturae* 2007. 113 p. .

284 [Gil-Izquierdo et al. ()] 'An in vitro method to simulate phenolic compounds release from the food matrix in
285 the gastrointestinal tract'. A Gil-Izquierdo , P Zafrilla , F A Tomás-Barberán . *European Food Research and
286 Technology* 2002. 214 p. .

287 [Zapata and Dufour ()] 'Ascorbic, dehydroascorbic and isoascorbic acid simultaneous determinations by reverse
288 phase ion interaction HPLC'. S Zapata , J F Dufour . *Journal of Food Science* 1992. 57 p. .

289 [O'sullivan et al. ()] 'Bioaccessibility, uptake, and transport of carotenoids from peppers (Capsicum spp.) using
290 the coupled in vitro digestion and human intestinal Caco-2 cell model'. L O'sullivan , M Jiwan , T Daly , N
291 M O'brien . *Journal of Agricultural and Food Chemistry* 2010. 58 p. .

292 [Bioactive compounds content and total antioxidant activity of two Savoy cabbages Czech Journal of Food Sciences]
293 'Bioactive compounds content and total antioxidant activity of two Savoy cabbages'. *Czech Journal of Food
294 Sciences* 32 p. .

295 [Xiao and Bai ()] 'Bioactive phytochemicals'. J Xiao , W Bai . *Critical Reviews. Food Science and Nutrition* 2019.
296 59 p. .

297 [Manach et al. ()] 'Bioavailability and bioefficacy of polyphenols in humans. II Review of 97 bioavailability
298 studies'. C Manach , G Williamson , C Morand , A Scalbert . *American Journal of Clinical Nutrition* 2005.
299 81 p. .

300 [Clarke et al. ()] 'Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming
301 broccoli sprouts or broccoli supplement in a cross-over study design'. J D Clarke , A Hsu , K Riedl , D Bella
302 , S J Schwartz , J F Stevens , E Ho . *Pharmacological Research* 2011. 64 p. .

303 [Crozier et al. ()] 'Bioavailability of dietary flavonoids and phenolic compounds'. A Crozier , D Del Rio , M N
304 Clifford . *Molecular Aspects of Medicine* 2010. 31 p. .

305 [Carbonell-Capella et al. ()] J M Carbonell-Capella , M Buniowska , F J Barba , J Esteve , A Frígola .
306 *Analytical Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds from Fruits
307 and Vegetables: A Review. Comprehensive Reviews in Food Science and Food Safety*, 2014. 13 p. .

308 [Faulks and Southon ()] 'Challenges to understanding and measuring carotenoid bioavailability'. R M Faulks , S
309 Southon . *BBA Molecular Basis of Disease* 2005. 1740 (2) p. .

310 [Bernalte et al. ()] *Compuestos fitoquímicos antioxidantes en diferentes cultivares de brócoli (Brassica oleracea
311 L. var. italica) de Extremadura*, M J Bernalte , M Lozano , M C Ayuso , M C Vidal , M I García , M T
312 Hernández , R M García , J J García . 2007. Actas de Horticultura. 48 p. .

313 [Koh et al. ()] 'Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli'. E
314 Koh , K M S Wimalasiri , A W Chassy , A E Mitchell . *Journal of Food Composition and Analysis* 2009. 22
315 p. .

316 [Usda/Ars ()] *Database for the Flavonoid Content of Selected Foods, Release 2.1. Retrieved March 20, 2007 from
317 the Nutrient Data Laboratory Home Page*, Usda/Ars . [http://www.nal.usda.gov/fnic/foodcomp/
318 data/flav/flav02-1.pdf](http://www.nal.usda.gov/fnic/foodcomp/data/flav/flav02-1.pdf) 2007. U.S. Department of Agriculture, Agricultural Research Service

319 [Gil et al. ()] 'Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and
320 vitamin C) of fresh-cut spinach'. M I Gil , F Ferreres , F A Tomás-Barberán . *Journal of Agricultural
321 and Food Chemistry* 1999. 47 p. .

322 [Meléndez-Martínez et al. ()] *Estabilidad de los pigmentos carotenoides en los alimentos*, A J Meléndez-Martínez
323 , I M Vicario , F J Heredia . 2004. Archivos Latinoamericanos de Nutrición. p. 54.

324 [Fernández-León et al. ()] 'Fast and accurate alternative UVchemometric method for the determination of
325 Chlorophyll A and B in broccoli (*Brassica oleracea Italica*) and cabbage (*Brassica oleracea Sabauda*) plants'.
326 M F Fernández-León , M Lozano , M C Ayuso , A M Fernández-León , D González-Gómez . *Journal of Food
327 Composition and Analysis* 2010. 23 p. .

328 [Cohen et al. ()] 'Fruit and vegetable intakes and prostate cancer'. J H Cohen , A R Kristal , J L Stanford .
329 *Journal of the National Cancer Institute* 2000. 92 p. .

330 [Vallejo et al. ()] 'Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale
331 period'. F Vallejo , F A Tomás-Barberán , C García-Viguera . *Journal of Agricultural and Food Chemistry*
332 2003a. 51 p. .

333 [Kroon et al. ()] 'How should we assess the effects of exposure to dietary polyphenols in vitro?'. P A Kroon ,
334 M N Clifford , A Crozier , A J Day , J L Donovan , C Manach , G Williamson . *The American Journal of
335 Clinical Nutrition* 2004. 80 p. .

336 [Fernández-León et al. ()] 'Identification, quantification and comparison of the principal bioactive compounds
337 and external quality parameters of two broccoli cultivars'. M F Fernández-León , A M Fernández-León , M
338 Lozano Ruiz , M C Ayuso Yuste , D González-Gómez . *Journal of Functional Foods* 2012. 4 p. .

339 [Vallejo et al. ()] 'In vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glu-
340 cosinolates, and vitamin C'. F Vallejo , A Gil-Izquierdo , A Pérez-Vicente , C García-Viguera . *Journal of
341 Agricultural and Food Chemistry* 2004. 52 p. .

342 [Pérez-Vicente et al. ()] 'In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds,
343 anthocyanins, and vitamin C'. A Pérez-Vicente , A Gil-Izquierdo , C García-Viguera . *Journal of Agricultural
344 and Food Chemistry* 2002. 50 p. .

345 [Saura-Calixto et al. ()] 'Intake and bioaccessibility of total polyphenols in a whole diet'. F Saura-Calixto , J
346 Serrano , I Goñi . *Food Chemistry* 2007. 101 p. .

347 [Selma et al. ()] 'Interaction between phenolics and gut microbiota: role in human health'. M V Selma , J C
348 Espín , F A Tomás-Barberán . *Journal of Agricultural and Food Chemistry* 2009. 12 p. .

349 [Maiani et al. ()] G Maiani , M J Periago Caston , G Catasta , E Toti , I Goñi Cambrodón , A Bysted , F
350 Granado-Lorencio , B Olmedilla-Alonso , P Knuthsen , M Valoti , V Böhm , E Mayer-Miebach , D Behsnilian
351 , U Schlemmer . *Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their
352 protective role in humans*, 2009. 53 p. .

353 [Deschene et al. ()] 'Membrane deterioration during postharvest senescence of broccoli florets: modulation by
354 temperature and controlled atmosphere storage'. A Deschene , G Paliyath , E C Lougheed , E B Dumbroff ,
355 J E Thompson . *Postharvest Biology and Technology* 1991. 1 p. .

356 [Xiao et al. ()] *Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant
357 capacity*, Z Xiao , S R Rausch , Y Luo , J Sun , L Yu , Q Wang , P Chen , L Yu , J R Stommel . 2019. 101
358 p. . LWT-Food Science and Technology

359 [Pharmacopeia ()] *National formulary (USP 24 NF 19)*, Pharmacopeia . 2000. MD, US: Rockville.

360 [Podsedek ()] 'Natural antioxidants and antioxidant capacity of Brassica vegetables: A review'. A Podsedek .
361 *LWT-Food Science and Technology* 2007. 40 p. .

362 [Dixon ()] 'Natural products and plant disease resistance'. R Dixon . *Nature* 2001. 411 p. .

363 [Ornelas-Paz et al. (eds.) ()] J J Ornelas-Paz , E M Yahia , A A Gardea-Béjar , J D Pérez-Martínez , V Ibarra-
364 Junquera , M P Escalante-Minakata , S Ruiz-Cruz , E Ochoa-Reyes . *Biodisponibilidad y actividad biológica
365 de carotenoides y vitamina A*. En, Emilio Alvarez Párrilla , Laura A De La Rosa , Gustavo A González
366 Aguilar Y , J Fernando Ayala Zavala (eds.) (México D.F.) 2012. p. . (Antioxidantes en alimentos y salud)

367 [Vallejo et al. ()] 'Phenolic compound contents in edible parts of broccoli inflorescences after domestic cooking'.
368 F Vallejo , F A Tomás-Barberán , C García-Viguera . *Journal of the Science of Food and Agriculture* 2003b.
369 83 p. .

370 [González-Gómez et al. ()] 'PLS calibration to resolve overlapping peaks of lutein and zeaxanthin in vegetable
371 samples by LC'. D González-Gómez , M Lozano , A M Fernández-León , M F Fernández-León , F Cañada-
372 Cañada . *Czech Journal of Food Sciences* 2011. 30 p. .

373 [Pérez-Gálvez and Mínguez-Mosquera ()] A Pérez-Gálvez , M I Mínguez-Mosquera . *Clorofilas y carotenoides:
374 des screening a la bioactividad tisular. Taller científico sobre alimentos e ingredientes funcionales*, 2007.
375 (Instituto de la grasa (CSIC))

376 [Zhuang et al. ()] 'Senescence of broccoli buds is related to changes in lipid peroxidation'. H Zhuang , D F
377 Hildebrand , M M Barth . *Journal of Agriculture and Food Chemistry* 1995. 43 p. .

378 [Mínguez-Mosquera and Hornero-Méndez ()] 'Separation and quantification of the Carotenoid Pigments in Red
379 Peppers (*Capsicum annuum L.*), Paprika and Oleoresin by Reversed-Phase HPLC'. M I Mínguez-Mosquera ,
380 D Hornero-Méndez . *Journal of Agricultural and Food Chemistry* 1993. 41 p. .

381 [Chen and Chen ()] 'Stability of chlorophylls and carotenoids in sweet potato leaves during microwave cooking'.
382 B H Chen , Y Y Chen . *Journal of Agricultural Food Chemistry* 1993. 41 p. .

383 [Fruton (ed.) ()] *The Enzymes*, J S Fruton . B.P.D. (ed.) 1971. New York; INC: Academic Press. p. 138. (Pepsin)

384 [Lee et al. ()] 'The microencapsulated ascorbic acid release in vitro and its effect on iron bioavailability'. J B Lee
385 , J Ahn , J Lee , H S Kwak . *Archives of Pharmacal Research* 2003. 26 p. .

386 [Lima et al. ()] 'Total phenolic and carotenoid content in acerola genotypes harvested at three ripening stages'.
387 V L A G Lima , E A Mélo , M I S Maciel , F G Prazeres , R S Musser , D E S Lima . *Food Chemistry* 2005.
388 90 p. .

389 [Singh et al. ()] 'Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables'. J Singh , A K
390 Upadhyay , K Prasad , A Bahadur , M Rai . *Journal of Food Composition and Analysis* 2007. 20 p. .

391 [O'connell et al. ()] 'Xanthophyll carotenoids are more bioaccessible from fruits than dark green vegetables'. O
392 F O'connell , L Ryan , N M O'brien . *Nutrition research* 2007. New York, N.Y.. 27 p. .

393 [Yeum and Russell ()] K J Yeum , R M Russell . *Carotenoid bioavailability and bioconversion*, 2002. 22 p. .