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Relativistic Exploration of Dark Matter Effects

in Rotating Galaxy, Studied Fluid-Dynamically

Tsutomu Kambe

ABSTRACT

Galactic space is filled with interstellar clouds of neutral gases. Motion of the space-clouds is viewed
as a flow of continuous fluid in curved space with gravity. Dynamical motions of the space-fluid of
rotating galaxies are investigated by extending Fluid Dynamics to that in the frame of general relativity.
Fluid flow field to be extended to that of a relativistic theory is reinforced by the fluid gauge theory
equipped with a background (dark) gauge field conditioning the fluid continuity. The Gravity-space
Fluid Dynamics thus developed captures main feature of the dark-matter effect as the action of the
gauge field on the motion of space fluids. In the present formulation, the stress-energy tensor in the
general relativity is revised in order to take account of general nature of stress field by extending the
isotropic pressure to an-isotropic stress field.

Regarding the dark-matter effect, McGaugh-Lelli-Schombert (2016) found a strong evidence, that
shows existence of a functional correlation between the observed centripetal radial-acceleration and the
gravitational acceleration predicted by observed baryon distribution within galaxy. This implies that
the dark matter contribution is specified by the baryon distribution. Present theory is consistent with
this view and gives an explicit mathematical expression to the acceleration attributed to the dark-
matter effect. The effect is created by the action of the gauge field a. The gauge field is determined
by an equation in which the field a is excited by the current flux defined with product of fluid density

p and fluid velocity v, and the degree of excitation of a is controlled by a field parameter ug.

Agreement between astronomical data and the data deduced from the theory is excellent.

Keywords: dark-matter-efect — space-cloud — fuid-gauge-feld — gravity — relativistic-fuid-dynamics.

I.  INTRODUCTION

The cosmological issue of dark matter effect is stud-
ied with a new approach to spiral galaxies in rotational
motion (Fig.1). To that end, it is essential to recognize
that, in cosmic space, gas clouds are abundant and free
to move under physical fields: gravity field etc.

a) Motion of space clouds viewed as continuous flows

The emission lines (such as the HI-21 cm line) in cos-
mic space show abundance of neutral gas clouds in
the galactic interstellar space. The neutral gases are
captured by the galactic disk via its gravitational field
and its spiral arms. Kalberla & Kerp (2009) coined it as
Galactic Atmosphere over the galactic disk. Concerning
the gas clouds moving about cosmic space, their dynam-
ical motions should be described as flows of continuous
fluids. Present study is carried out from this view on
the basis of the Fluid Gauge Theory (Kambe 2021a).
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Although stars are very sparse in outer part (halo)
of our galaxy, the halo is dominated by invisible mat-
ters and actually contains considerable portion of the
total mass of the galaxy. Present approach is based on
the view that the dark matter effect might be caused
by invisible space-fluids, driven by the action of a fluid
gauge-field according to the theory. The space-fluids are
moving at very-high orbital speeds of about 200 ~ 300
km-s~! in the galactic space (Tully & Fisher (1977), So-
fue & Rubin (2001), McGaugh et al. (2016)) under
interaction with the galactic arms that rotate at high
speeds as well. Dynamical mechanism of the interaction
of space-fluids with the galactic arms moving at high
orbital speeds is the target of the present investigation.
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Figure 1: A sample spiral galaxy in rotation:
NGC 3198 (GALEX image, NASA).

It is known that observed rotation curves of galaxies
do not match the one expected from the Keplerian law
of velocity decreasing as R~'/? with R the distance from
the gravity center. At distances away from the center,
the stellar orbital motion tends to rotation with almost
constant velocity. This hints that certain mechanism is
working at halo parts of galaxies more conspicuously.

b) Field description strengthened for rotational one
Present approach takes a new two-sided strategy,
namely on the one hand the theory is strengthened by
an improved action term of new stress field, on the
other hand the dark object might be space-fluids ex-
isting abundantly in cosmic space. In fact, its flow field
is reinforced by the fluid gauge theory equipped with a
background (dark) gauge field (Kambe 2021a).
According to the theory, the isotropic pressure of Eule-
rian system is extended to an-isotropic stress fields giv-
ing rise to flows of rotational nature inherently. Thus, a
new approach is formulated on the basis of the variation
principle for a perfect fluid in the presence of gravity.

The present theory reinforces the fluid flow fields with
a background (dark) gauge field. The gauge field not
only ensures the mass conservation of fluid flows, but
also assists the flow field with transition of its stress field
ok, from the isotropic pressure stress pd;j, prevailing in
quiet states of slow motion to an-isotropic stress field
M, prevailing in turbulent flow states.

In this regard, a past study of acoustics (Kambe 2022)
is helpful to understand the transition. In the resonance
problem studied by Kundt, increasing the strength of
acoustic excitation triggers spontaneous transition of the
acoustic field from isotropic to an-isotropic stress field.
The an-isotropic rotational field is generated by an in-
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visible gauge field and responsible to formation of the
mysterious dust striations studied by Kundt (1866).

¢) Fluid Lorentz force

An important feature of the present theory is that
it includes a new dark gauge-field a, (v = 0,1,2,3 :
relativistic 4-components). Incorporation of a non-
gravitational field a, to the gravity field is assured by
the local-flatness theorem (Schutz 1985) and the Fin-
stein Equivalence Principle (Will 1993) in the general
relativity. In addition to the gravitational Lagrangian
built of metric alone yielding curved gravity space, fluid
motions are described by new fluid Lagrangians. Thus
new terms are introduced in equations of motion. The
new terms are analogous to electromagnetic terms, but
derived for neutral fluids here. One particular term to
be remarked is the fluid Lorentz force, v x b with v the
fluid velocity and b the fluid-magnetic field from a,,.

d) Twisted connection between physics of galaxy
rotation and visible matters
Physics of galaxy rotation is, in general, closely tied
to the gravity field of baryonic visible matters. But in
the present case, astronomical observations state that
mutual relation between them is not straightforward.

Observing celestial objects within a spiral galaxy, their
orbital velocities are detected spectroscopically at their
respective distances from the galactic center, while the
gravitational force is estimated from the data of baryonic
visible mass distribution of stars and gases in the galaxy.
The gravity forces thus obtained are not sufficient to
reproduce the observed velocity curves at outer parts of
most galaxies. This raised issues concerning presence of
dark matters in most galaxies.

On the other hand, the recent study (McGaugh et al.
2016) proposed a universal behavior, stating that the ro-
tational motion of a disk galaxy is determined entirely
by visible matters it contains, even if the disk is filled
with unknown dark matters, paradoxically. The last
implies a strong twisted connection between the visible
matters and the physics producing the rotational mo-
tion. Possible interpretations given by the authors of
McGaugh et al. (2016) are rephrased in the following
ways: either (a) it represents the end product of galaxy
formation, or (b) it is the result of new dynamical laws
rather than dark matter, or (c) it represents new physics
of a dark sector that leads to the observed coupling.

Present study takes new double-sided approach both
dynamically and physically: namely incorporating a
new dynamical field of dark gauge-field and attacking
the system with a new physics using an-isotropic stress
fields. Therefore, present approach is related to both
categories (b) and (c), in addition, with implicitly tak-



ing the view (a). The present approach is based on the
general-relativistic version of Fluid Gauge Theory.

e) HI-21 cm line tells a mystery from cosmic space

Few galaxies exhibit the Keplerian law v, oc R~/2
for the stellar velocity v, at large distance R from the
galactic center, but the galactic rotation velocities keep
high values at large values of R, flat instead of falling.
This was recognized as early as 1950s (Sofue & Rubin
2001), and later updated to the Tully-Fischer relation
(Tully & Fisher 1977): Mpgr x (vg)?P with p = 3.5 ~ 4,
for the Hydrogen gas velocity vy at outer halo part of a
galaxy and the total baryonic mass My, of the galaxy,
even in case with substantial dark matter. The Tully-
Fisher relation does not show any variation with scale
or size of galaxy, remarked by McGaugh (2005).

f) A key relation of galaxy dynamics: McGaugh-Lelli-
Schombert observational law

An important mathematical facet has been found for
the galaxy dynamics by McGaugh et al. (2016), from
statistics of a large set of 153 galaxies with different
morphology, masses, sizes and gas fractions. Concern-
ing the radial accelerations A. (toward the center) of
orbiting celestial objects of rotating galaxies, the law
says how the centripetal acceleration A. is related to
the absolute value of gravity acceleration A,.

To get an idea from simple analyses, let us take an
axi-symmetric cylindrical coordinate system (Z, R, ¢)
with an axi-symmetric disk plane, defined by Z = 0.
Consider a typical galaxy rotating around its center
(R = 0,Z = 0) with the velocity (0,0,V(R)), keeping
steady state circular rotation.

In this circumstance, the observed centripetal acceler-
ation is given by A, = VZ(R)/R. On the other hand,
from observed mass density distribution p(R) within a
galaxy, the gravity potential ®, is determined by solving
V2@, = 47Gp, and the gravity acceleration 4, is given
by A, = |0®,/0R| (> 0, for clarity). A fitting curve
was found by McGaugh et al. (2016) statistically, as

A
A =FA)= —2—, 1
()= L0 1)

where A; ~ 1.20 x 107'%ms~2. This implies a strong
connection between the baryonic gravity acceleration A,
and the physics that generates the observed A..

Looking at lower end of A, value (at halo part), the
curve is found to be consistent with the Tully-Fischer
relation. In fact, assuming |A4,/A;] < 1 and using
A. = (vg)?/R and A; o< Mp,/R? as R™! — 0, the
fitting curve (1) implies Mpq, o< (vgr)?, consistent with
the Tully-Fischer relation.

The difference between A. and A, (if any) is ac-
counted for as the contribution Apj; from dark matter
(DM): Apy = Ac— A,y. However, the centripetal accel-
eration A, is given by the fitting function F(A,). Thus,
the Apas should be given by F(Ay)— Ay, which is deter-
mined once A, is known regardless of DM. This means
that the acceleration Apys (attributed to the dark mat-
ter) is coupled to the visible mass p giving the grav-
itational acceleration A,. Then where exactly is the
freedom to be attributed to dark matter?

Regarding the sample galaxy NGC3198 (Fig.1), let us
try to estimate magnitudes of A, and A, from available
astronomical data (Venkataramani & Newell 2021). Its
rotation curve shows: V = 150km-s~! at R = 19kpc
from the galactic center, which implies A* = V2/R ~
4.0 x 107" ms=2. Then the fitting curve (1) gives
Ay ~ 1.0 x 107" ms~2. From these two values, the
DM contribution is estimated by the difference:

Appy=Ar—AF~3.0x10"" ms™2. (2)

One can remark a merit of their analysis. They are
using acceleration terms, A., A4 and Apys. Hence, their
arguments apply to any celestial object in accelerating
motion without regard to its magnitude of mass: a star,
a gas cloud, or a fluid particle of space-fluid.

g) Invisible field creating visible effect

As one of the possible theories to resolve the current
issue, the present paper proposes the Fluid Gauge The-
ory by extending the theory of fluid mechanics in flat
space to the general relativity theory in curved space
with gravity. The theory reinforces the fluid flow fields
with a background (dark) gauge field. The new field
strengthens the theory with two ways. The gauge field
not only ensures the mass conservation of fluid flows,
but also assists the flow field with transition of its stress
field oji, from the isotropic pressure pdj;, prevailing in
quiet states of slow motion to anisotropic stress field
My, prevailing in turbulent flows. This enables appro-
priate description for turbulent motions in cosmic space.

It is helpful to remember the case of Kundt-tube ex-
periment (§1.2) to get insight into the present issue. It
implies, ” The gauge field within the Kundt-tube is not
visible, yet creates visible dust-striations mechanically’.
This insight applies analogously to the gravitational po-
tential ®, as well: The gravitational potential ®, is not
visible, yet its derivatives 0,9, create visible dynamical

effect.

h) Composition of the paper
Next section 2 describes the basic fluid system in flat
space before extending to the general relativity in curved
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space. The fluid system is reinforced here by the fluid
gauge theory equipped with a background (dark) gauge
field. Extension to relativistic formulation according to
the general relativity for curved space under gravity is
carried out in the section 3 for isotropic pressure field
where the stress-energy tensor of fluid motion is derived
newly from the fluid Lagrangians. The section 4 explores
what the part of the gauge field Lagrangians bring for-
ward, and derives the equation of fluid motion under
the anisotropic stress field. The dark matter effect of
rotating spiral galaxies is investigated in section 5. Last
section 6 summarises the outcomes of the present study.*

1. FLUID SYSTEM IN FLAT SPACE BEFORE
EXTENDING TO CURVED SPACE

Relativistic formulation of Fluid Gauge Theory (FGT)
is presented in Kambe (2021a) in flat space, which re-
inforces representation of the stress field within flows
by adding rotational nature such as turbulence. This
was achieved by extending the isotropic pressure field of
Eulerian system to general anisotropic stress fields, ac-
cording to the general gauge principle (Utiyama 1956).

a) Lagrangians

According to the relativistic FGT theory (Kambe
2021a) in flat Lorentzian space, the fluid system is de-
scribed by the total Lagrangian LFET consisting of three
components, LT = Lpn + Line + Lar:

Len=—c (P +2(p) P,
Ling=c'j"a,,
Lo =—(4uc) 1 fun,

fux =0vax —Oxay, p=pV1-p52%
where the overlined values denote proper values and f=|v|/c
(see Appendix A.ii) and the Lagrangian L£gr includes a free
parameter ;1 to be fixed later. The first Lagrangian Lgy
describes a perfect fluid in motion with 4-current mass
flux j¥ = pv¥ defined by (A2), and the third Lgp de-
scribes an action of a background gauge field a, so as to
ensure the fluid motion to satisfy mass conservation (to
be shown later), while the middle L;,; describes their
mutual interaction between j¥ and the gauge-field a,.

1 Present study was partly presented orally at Physics-2023 held at
Los Angeles, USA, 17 - 20 July 2023, and its video at ”» STEMrv
- Physics” with the title ” Gauge Theory And Post-Newtonian
Gravitational Fields Of General Relativity, With Reference To
Dark Matter And Dark Space-Fluid”, by Tsutomu Kambe.
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Total action of this system STCT is defined by
SFGT = /EFGTdQ = / [ﬁFM + Line + Lar|d2, (7)

where d2 = d*z” = c¢dtd®z. It is helpful to consider
the form of first term Ly under non-relativistic limit
as 8 — 0. The expression of Ly cd®z per unit mass
(my = pd®z = 1) reduces to the non-relativistic form
of L, = 3 myv? — € (with v the velocity and e the spe-
cific internal energy), neglecting the rest-mass energy
—mqc? (Kambe 2021a). Hence it is seen that the ac-
tion Lym d*z" is a relativistic version, extended from
the classic non-relativistic Lagrangian L., pd3:c dt.

The third Lgr of (5) is the Lagrangian of the (dark)
gauge field represented in a form satisfying local gauge
invariance under variations of the gauge field a, (see
Kambe (2021b) §II) as well as ensuring current conser-
vation. The tensor f, defined in (6) is called the field
strength tensor. Its diagonal elements are all vanishing.

It is significant and important to recognize the follow-
ing. When the gauge field a,, is represented as a,, = 9,V
with a scalar field U(z%), then f, vanishes identically:

0 = 0,(0,0) — 01(0,9) = 0. (8)
It would not be an exaggeration to say that Fluid Gauge
Theory has been founded on the basis of this property.

Rewriting the field a, as (¢,a), two 3-vectors b
and e are defined by using the 3-space notation a =
(al, as, ag);

b=Vxa, e = —0ia — Vo, (9)
where b and e are introduced as a pair of fluid Maxwell
fields in the fluid system. If the gauge field a, is rep-
resented as a, = 9, ¥, all the components f,, and f”)‘
vanish. Correspondingly, both of b and e vanish.

Next, we are going to deduce equations of motion from
the action principle. In addition, the stress field o(x)
will be used to represent force fields acting on the fluid.

b) Governing equations

Let us consider first how the fluid motion is described,
and later consider what effect the background (dark)
field would contribute to the fluid motion.

i. FEquation of fluid motion
To find the equations of fluid motion, the action prin-
ciple is applied to SFGT, by assuming the gauge field a,,
fixed and vary only the position coordinate x* of fluid
particles as ¥ — z¥ + 0z (for v = 1,2, 3, where the



particle is moving with the velocity v = Dyz"). Since
the third Lagrangian Lgp is invariant (no variable to be
varied), the action variation is given by

B / [.CFM A2 + Lin d02), (10)

which is required to vanish for arbitrary variation dx”
of particle position.

Variation of the first term Lgy df2 is non-trivial be-
cause the term z does not appear in the definition (3)
explicitly, but it is included implicitly owing to the fact
that the integrand Lgy df? is expressed with proper val-
ues only. But one can find its equivalent expression at
a moving frame where the fluid is in motion in the real
frame of observation, obtained with a Lorentz transfor-
mation so that the particle velocity v¥ = D;x¥ appears
explicitly. From (3), such expression is given by

LevdR=—c"1? +¢(p))p da® d®z

=—c(1+c¢ % (p)) (pdga:) dr, (11)

with 5 = py/1 — (|v]/¢)? and d7 = /1 — (Jv]/c)? da®.
This dr includes the velocity |v| = |Dsx|, its variation
0(d7) must be implemented in the variation analysis.

Then one may write the variation as

S[Lrn d2] = [(5Lf) dr + Ly 5(d7)] (pd3z),  (12)

where Ly = —c(1 + ¢2€(p)). The variation is carried
out with keeping the mass element Am = pd®z (within
the volume element d®z) fixed. In regard to the term
5(dr), we have 0(dr?) = 2drddr = —2n,, dztddz”
from (A3). Hence, we obtain the following:

dz* y y
odr = Mg déz” = —u, déz”. (13)
Thus the expression of §[Lpy df2] is deduced as
Am /5 d 1. y
—? (C EUV + 58111))51‘ dT7 (14)

omitting O(f?)-terms.  Regarding the second La-
grangian term Ly df?2, its variation is deduced as

0[Line d2] = (Am) fo ut 62 dr (15)

(see Appendix B.3 of Kambe (2021a)). From (14) and
(15), the summation §[Lrym d2] + §[Lins d92] is given by

- d L . v
—ct (Am) | W + %a,jp —c fyput | dréx” (16)

with neglecting both higher order terms and vanish-
ing integrals with respect to 7. Requiring §[Lpy d82] +
0[Lint df2] = 0 for arbitrary variation dz¥, one finds

d 1
& e + %8,,13 —cfouu” =0. (17)
This is rewritten for v = 1,2,3 (= k) as
D 1
o = Okp — frwv” =0, (18)

Dt 1—52+p

where u, = (v /[c\/1 — 5?]) is used from (A4). Thus,
in the non-relativistic limit as § — 0, the equation of
motion is deduced as follows:

pDivg = —0kp +p frov”, (k=1,2,3). (19)

This is the Euler’s equation with the additional term
p fryv” on the right hand side. The first term —0Jkp
came from the isotropic pressure stress o}k = —pdjk of
(41). The second is a new term that came from the
an-isotropic stress O’?k to be given below.

il. Fquations of a. (background dark gauge field)

In order to find the equations governing a, from the
variation principle, the fluid motion v is kept fixed and
only the gauge field a, is varied as a, — a, + da,.
In this case, the first Lagrangian Lg); is invariant,
and the action variation of remaining two is given by
§f [Eint d2 + Lar dQ], which is required to vanish for
arbitrary variation da,,.

First, note that 6(f** fux) = 2" (6f,x). Therefore,
variation of ¢ (§Lint + 0LgF) is given by

g

From the action principle requiring vanishing of (20) for
arbitrary variation da,, we obtain

1 0

— ——f’“) Say.

e (20)

0
oz

fl/)\ = quu7 jy = (pcv pv)7 (21)

(Kambe 2021a), where p of (5) is a control parameter,
hence redefined here as pp, which controls the degree
of mutual interaction between the current j” and the
tensor f¥* of the background gauge field.
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ili. FEquations of a, b and e

Using the definitions e = —9;a — V¢ and b =V x a
defined in (9), the equation (21) is transformed into a
pair of equations analogous to the Maxwell equations
of Electromagnetism. In fact, with defining d and h by
d = ece and h = b/up with using € = 1/(ur c?), the
equation (21) gives a pair of Maxwell equations:

—0y(e€) + pp'V x b= j, V- (ee) = p. (22)
Definition (9) leads to another pair:
Ob+V xe=0, V-b=0. (23)

¢) Fquation of current conservation

The equation of current conservation can be derived
from Eq.(21), which is directly connected to the gauge-
invariant property of the Lagrangian Lgp. Applying
the divergence operator 9, on (21), one obtains 0 =
0,0, f"A = pup 0,7". The middle side vanishes because
of the anti-symmetry of f** and the symmetry of 0,0
to interchanging of ¥ and A. Hence, total summation
leads to the current conservation equation:

0,3 =0, = 0Op+V-(pv)=0. (24)

Thus the third Lgr ensures the mass conservation.

Additional remark must be given on the mass conser-
vation. If the gauge field a, is represented as a, = 0, ¥,
all the matrix components f,» and f** of (3.7) van-
ish identically. However, even in this case (a, = 9,7),
one can deduce the same current conservation, and the
system of two Lagrangians Lpy and Lyt defines the
whole fluid system, since the third Lagrangian vanishes
Lar = 0. In fact, firstly, one can show that the variation
8 [¢Lingd2 = [ j¥ba, dR2 is given by the following:

/j”audlll 40 = —/(ayj'/)éxp 4.

The action principle requires vanishing of this integral
for arbitrary variation 6W. Hence we obtain the same
current conservation law: 9,j” = 0. Secondly, the total
action variation of (10) leads to the equation (19) with
fry = 0, which is nothing but the Euler equation.

Thus, in the case a,, = 0, ¥, the whole fluid system
reduces to the Eulerian system:

pDyv=—Vp, Op+ V- (pv)=0. (25)

This is the essential point of the Fluid Gauge Theory.

© 2023 Global Journals

d) Significance of the theory

The present fluid gauge theory for a perfect fluid rep-
resents a broader class of flow fields than the current
Eulerian field, by introducing the background field a”
and covering a wider family of flow fields of a perfect
fluid (Kambe, 2020, §5, an inviscid fluid).

In the presence of the gauge field a”, the governing
equation is given by (19), which can be expressed by an
equivalent 3-vector form, as follows:

pDiw=-Vp+pf,, (26)

fo=vxb+e=vxb—Vo¢-—0da. (27)
Note that this includes the Lorentz-type force f, in
fluid-flow field which is neutral electrically. The role of
charge density in the electromagnetism is played by the
mass density p. Significance of the fluid Lorentz accel-
eration f, is interpreted from the following two aspects.

Firstly, as seen in (27), the acceleration f, is appar-
ently independent of the mass density p although the
b-field is controlled by j = pv as seen from (22). The
f. instead depends on the velocity v unlike the grav-
ity acceleration. In addition, it depends on the time
derivative 0;a and rotational term V x a. Hence the
f. would become significant in turbulent flow fields
in which flow fields are time-dependent and rotational.
The fluid Lorentz acceleration f, is considered to be a
generalization of the pressure force —Vp, as seen next.

Secondly, physical meaning of f, may be given as fol-
lows. The force field F, = pf, is represented by the
stress field M¥*. In fact, for spatial components (i, k =
1,2,3), the k-th component of the force F, = pf, can
be written as follows:

(F)* = (pe + pv x b)F =—9,M"*, (28)

M% =ce(ex b)g, M = Lelel* + L pp' b = we,

M* = —ceep, — ,ugl bibr + wedik, (29)
where 0, = (¢710;,0,), and pp and € = 1/(ur c?) are
parameters of flow fields, The equality (pe + pv X b)) =
—0,M"* can be shown by using (22) and (23). The
stress tensor M of (29) as well as the parameters ¢
and pp are analogous to the Maxwell stress tensor of
electromagnetism. The term (—V p)* on the right-hand
side of (26) can be written as —9;(p7%), a force from
the isotropic pressure stress —pd&7*. According to the
present fluid gauge theory, the state of isotropic pres-
sure stress pd7* of Eulerian system is extended to the
state of combined an-isotropic stress p 87 + MI*.



In the next section III, we try to apply the Fluid Gauge
Theory to fluid flows under gravity of cosmic space. To
that end, formulation of the theory must be extended to
such a form appropriate to the general relativity.

[1I.  Fruib FLow IN CURVED SPACE WITH
GRravITY (1) [soTROPIC PRESSURE FIELD

A new approach of Gravity-space Fluid Dynamics is
taken in this section by reformulating the Fluid Gauge
Theory, in order being applicable to space-fluid flows in
curved space under gravity. This approach aims at cap-
turing how the space-fluid behaves and how the dark
matter effect is associated with fluid flows in the galac-
tic space, where the space is curved by the gravity field
and abundant neutral gas-clouds are moving under its
influence. Neutral hydrogen gas-clouds are free to move
around the cosmic space under gravity, behaving as con-
tinuous gaseous fluids, hence could be described as fluid

flows in gravity space. The neutral clouds caught by the
galactic disks are moving at hyper orbital-speeds of the

order 200 ~ 300 km- s71.

Its theoretical frame is formulated according to the
variational principle for the Lagrangians consisting of
the one for curved empty space built of geometry alone
and another for a perfect fluid in the presence of gravity.
In the general relativity (Einstein 1915), the Einstein
field equation takes the form:

G=«kT, k= 81G/ct (30)
where G and T are respectively the Einstein curvature
tensor and the stress-energy tensor of a perfect fluid.
A constant parameter x represents connection between
the gravitational geometry and the fluid motion where
G is the gravity constant and c the light speed. The
equation (30) is a simplified symbolic equation. More
detailed form will be given explicitly later with (44).

Regarding the stress-energy tensor T, it is noted that
its tensor representation is usually given, not as one de-
rived from Lagrangian, but given either a definition of a
perfect fluid, or given as a form deduced by relativistic
covariant transformation from the state at rest.

In the present section III, the currently used form of
stress-energy tensor T is derived from the relativistic
FGT-Lagrangian Lgy of a perfect fluid, defined by the
equation (3). The present section derives the tensor
from Lgy, by extending the Lagrangian given relativis-
tically in flat space to that in curved space. However,
the FGT-Lagrangian of a perfect fluid includes another

two Lagrangians Li,; and Lgr given by (4) and (5).

It must be remarked that the representation of T' cur-
rently used is not sufficient to describe general rota-

tional motions of space-fluids. This is closely associated
with the isotropic nature of the pressure stress adopted.
Those insufficient aspects of Eulerian system were al-
ready mentioned in previous section. In particular, the
section II,d described its details. The Fluid Gauge The-
ory of §II was proposed to amend the inadequacy (in-
sufficiency) of the system covered by the current Eule-
rian theory. Derivation of the contributions from the
remaining two Lagrangians and extension to the general
relativity are carried out in the next section IV.

An important feature of the FGT theory is that it
takes into account a new component of a gauge-field
a, which is a mon-gravitational field. Incorporation of
such a non-gravitational field to the gravity field is as-
sured in the framework of general relativity by the local-
flatness theorem (Schutz 1985) and the Einstein equiv-
alence principle (Will 1993). In addition to the well-
known gravitational Lagrangian built of metric alone
yielding gravitational curved-space, this principle en-
ables the FGT Lagrangians taken into the system. Thus,
governing equations of motion are derived for space-
fluids in motion under influence of gravity and gauge-
field ensuring the mass conservation.

Thus, in the cosmic fluid dynamics, new terms are in-
troduced to the equations of motion, having forms anal-
ogous to the electromagnetism but working for neutral
fluids. One particular term to be mentioned takes a form
analogous to the Lorentz force, v x b, where the fluid
magnetic field b is derived from the gauge field a,, .

The FGT theory for fluid flows has an amazing
similarity with the gravito-magnetic field known by
the ETL-theory (Einstein-Lense-Thirring), studied by
Pfister (2007, 2012), Mashhoon (2008) and Ruggiero
& Tartaglia (2002), recently in particular by Ludwig
(2021a,b) and Srivastava et al. (2023). Although both
theories predict deviation of orbital motions from the
Keplerian, the ET L-effect is the frame-dragging, namely
a geometrical effect proportional to the small gravity
constant G, while the former FGT-effect is a dragging
by the fluid gauge field a, to ensure the fluid continuity
condition. Comparing both, it is seen below that the
gravitational ETL-effect is much smaller (in orders of
magnitude) than the fluid-mechanical FGT-effect.

Thus, the Gravity-space Fluid Dynamics is formulated
according to general relativity. In a general non-inertial
system of reference with #® = (20, 2!, 22, 23) a space-
time point and z° = ct, the square of interval is repre-
sented in terms of the metric coefficients g, as

ds? = gop dz®da?, (31)
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a) Hilbert action principle for gravity and space fluid
Let us define the action I by

= /,Cd‘*x - /L(—g)1/2 dz (32)
and follow the Hilbert variation principle (Hilbert
(1915), Misner et al. (2017)), where g = det go3, and
(—g)'/? d*z is the proper 4-volume (e.g. Schutz (1985)
§6.2), and £ = (—g)/? L the Lagrangian density.

When one deals with the empty space, the Lagrangian
L is built of geometry alone (written as Lgeom), Which
is represented by the Hilbert form (Hilbert 1915):

1

Lgeom = 5 R, k= 81G/c?, (33)

where R is the scalar curvature defined as the trace of
the Ricci tensor R = R%,. ?

When the space is not empty but filled with flows of
neutral clouds, then the Lagrangian L has an additional
term Lgyiq from the clouds; thus L = Lgeom — Lfuid, OF

ﬁ - Lgcom (_9)1/2 - Lﬁuid (_9)1/27 (34)
where the term — Lgy;q 1s used instead of Lgyq because
the term is moved to right-hand side of equation later.
If the space fluid term Lgyiq(—g)'/? is neglected, the La-
grangian £ is given only by Lgeom = Lgeom (—g)'/? =
(2k)"'R /=g, and its variation with respect to the
metric coefficient ¢®? results in 6L = (2k) ™! Gop 0927,
where G is the Einstein curvature tensor. Then the
variation principle £ = 0 requires G, = 0 for arbi-
trary variation 6¢g®?, which gives geometrical descrip-
tion of the empty space, namely a Lorentzian manifold
of the vacuum solution.

To find the corresponding component from the fluid
field Lgyiq, the variation of Lgyq with respect to the
metric coefficient ¢g®? proves to be useful for generating

the stress-energy tensor T;f;uid) of the space-fluid. The
gives the source term on the

(fluid)
stress-energy tensor T, 3
right-hand side of the Einstein field equation (30). From
the Hilbert action principle, the Einstein’s geometro-
dynamics is given by
Gap = ke TG (k= 87G/c). (35)

Its detailed representation is given by (44).

2 R®, = g®¥ Ryq, where R, g is the Ricci curvature tensor defined

by R”‘wﬁ, and Ryauﬁ is he Riemann curvature tensor.
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b) Variational analysis of the gravity-space fluid

The action principle for the Lagrangian Lgeom =
Lgeom(—g)*/? is well-known (Landau & Lifshitz (1975),
Hilbert (1915), Misner et al. (2017) and Wald (1984)).
Hence, only resulting final expression is given here. Vari-
ation of £ of (34) with respect to g*? is given by :

1
5 (Ld'z) = 5 Gos 5g°f (—g)V?dx

0 Ly o
[t 4 gas L] 9% (~)" 2, (30
(see §21.2 of Misner et al. (2017))% ,where Gop (Einstein
curvature tensor) and §(—g)'/? are given by

Gaﬁ EROC,@ — %(5(1573,, (37)

5(—=g)"?=—1 (=9)"/? gap 69°°. (38)

In §2, we studied the FGT theory where the Lagrangian
LFST was introduced. According to the equation (34),

the fluid part Lawia = Lawa (—g)"/? is given by £FCT,

Lawia = LYT = Lenm + Ling + Lar. (39)

where Lrm, Ling and Lgr are defined in (3) ~ (5).

i. Contribution from Lym = —cp— ¢ ' ph(p)

Let us start considering the contribution from the first
term Ly for variation analysis. Owing to the inherent
nature of fluid motion, the Lagrangian Lpy d*z is di-
vided into following two terms:

—cpdtz—c? EE: —eMdr—ct fﬂ, (40)

where the firs term represents the mass-property of the
fluid of mass M and the second term representing a
thermodynamic property of continuous medium charac-
terized with an enthalpy P per unit volume:*

3 In the section §21.2 of Misner et al. (2017), the Palatini method of
variation with respect to the Christoffel connection is also carried
out. However, it is shown that contribution from those variations
vanishes, resulting in vanishing of the covariant derivative of the
metric tensor g,g in the present formulation.

4 The second term p is taken into account from relativistic point
of view. The post-Newtonian formulations (Blenched et al. 1990
Jaranowski et al. 2015) also take the fluid enthalpy P = pe+p;
in their formulation. In view of the present analysis to be given
below, an alternative expression P = p—+ pé would be appropriate,
where the term € represents not only the thermal energy but a
certain internal energy of kinematical origin.



P = ph = (pe +p), (41)
and M = ﬂig‘x is the proper mass within the proper
3-volume d*z:

M= (py/1-p2) (dPz/\/1 - p2) = pd’a,

and dr = da® = /1 — 52 da¥ is the proper time.

Finally, the right-hand side of (40) is rewritten as

Lrvdlz=—cMdr—c P (—g)/2d%.  (42)

¢) Governing equations of the combined system
Lgeom—FM = £ge0m _ £FM
Let us first examine the case of combined Lagrangian
Loeo—F — Lgeom — Lwm, where Lgyiq is replaced by the
first part Lyy (rather than the total: Lgya = Lrm +
Lint + Lgr). Remaining parts will give new innovative
effects which are investigated in the next §IV. The present
case deduces the stress-energy tensor well-known in the
current cosmological theory. Let us check it here now.
From (36), the action principle requires vanishing of the

following expression for arbitrary variation of §¢®°:

5 (L9 F dty) = [i (Raﬁ - %'R(Saﬂ)

B (5LFM

5g°‘ﬁ - %gaﬂLFM>:| 6.9%8 (_9)1/2 d4{L‘. (43)

Vanishing of (43) for arbitrary 6g*” leads to

(SLFM

_ 1 _ —
Gap=2kK (5 JapLem 7590“/3 ) =rcThp (44)

T = p ugug + 2P (uaU5 + gaﬂ)a (45)

where ke = 87G/c®. The left-hand side of (44) is the
Einstein tensor Gog = Rap — 3 Rdap, and the tensor
Twp on the right-hand side is the stress-energy tensor of
the perfect fluid motion (c¢f. Misner et al. (2017), Box-
5.1, §22.3).

The form of stress-energy tensor T, of (45) is given in
standard texts (Misner et al. (2017); Will (1993); Schutz
(1985); Wald (1984)). Each text shows T,z dif-
ferently though slightly. However, those have a com-
mon feature of the flow field where the pressure stress is
isotropic. This must be reviewed carefully from physi-
cal view-point. One more feature in common is that no
action principle is given for its derivation.

The fluid gauge theory generalizes the stress field from
isotropic to an-isotropic stress, improving and strength-
ening description of flow fields of rotational nature
or time-dependent rotational turbulent motions. The
derivation is based on the action principle.

i. Cosmological Fluid Dynamics: Equations of motion

Stress energy tensor of a perfect fuid is given by (45):

Tog = Quawg —1—0727390@ (46)

where P = p + pe and Q = p + ¢ 2P. Applying the
divergence operator V¢ to the first leg «, we obtain
local conservation law of the energy-momentum:

VO, = [uaan +Q (V“ua)] ug

+Q (uaV*)ug +c VP =0.  (47)

The vanishing of VT, is implied by the Bianchi iden-
tity (e.g. Schutz (1985) §6.6).
(a) Parallel component to u” (Continuity equation) :

Let us first take the component along the 4-velocity
u” of this equation (see (Misner et al. 2017) §22.3):

0=u’VT,5=—uaV — (p+ ¢ 2P) (VOuy,).(48)

This reduces to the equation of mass conservation (24):

O+ V- (pv) =0, (49)
by noting that u,V¢ = u*Vy, = Dy = 0y + v -V, and
Vg = Vau® = V-v (see (A6) for p = 1.), and neglect-
ing the last term ¢ 2P under the assumption 3% < 1.
(b) Orthogonal component (Equation of motion):

Let us consider the three other components orthogo-
nal to the 4-velocity ug of VT, (= 0). The following
Orthogonal Projection tensor Z is useful:

Z =" +urP. (50)

In order to pluck them out of V7,3 = 0, we take the
contraction of Z with V71,3 = 0:

0=ZVTas = (p+c 2P) (u*Vy)u"
+c 2 VHP 4 ¢ 2ut (uPV)P,  (51)
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where the factor (u®*Vy)u* on the right-hand side be-

comes ¢~ 2Dyv* with neglecting terms of O(3%). Thus
vanishing of the last expression (51) reduces to
pDwt + VP =p(0y +v-V)o' + VAP =0, (52)

(cf. (A6)) with omitting small terms of O(32). This is
the Euler’s equation of motion for a perfect fluid.

IV.  Fruib FLow IN CURVED SPACE BY
GRrAvITY (I1) NEwW ANISOTROPIC STRESS
FIELD

In the previous section, the action principle was ap-
plied to the composite Lagrangians Lgcom — Lrm, and
the Euler’s equation of motion was derived for a per-
fect fluid from the Bianchi identity. In addition, the
Lagrangian Lpy vields the stress-energy tensor T’ which
is used currently. However, the action principle was ap-
plied to only one term of the Lagrangian Lgy, not to
the total Lagrangian £FST of (39) including two more
terms: Ly and Lgp. This section explores new mecha-
nism which these two terms bring forward. Thus, new
anisotropic stress field is introduced into the flow field
of space-fluids.

Main concern is the stress field within the flow field.
In the previous section, it is represented with the term
P gap of Tpp of (46). This results in the last term of
(52) for the Gravito-space Fluid Dynamics. In ordinary
Eulerian fluid dynamics, this term corresponds to the
pressure gradient Vp.

The FGT theory includes a new component of gauge
field a,(z®). In addition to the gravitational La-
grangian Lgeom of (33) yielding curved space, the non-
gravitational Lagrangians L, and Lgp are incorpo-
rated here according to the local-flatness theorem and
equivalence principle (Schutz (1985); Will (1993); Mis-
ner et al. (2017)).

a) Incorporation of gauge field: Equivalence Principle
According to the local flatness theorem (Schutz (1985)
§6.2), the relativistic equations derived in §II should be
valid as well at a locally-flat Lorentz frame in curved
gravity space. Equations governing the gauge field a,
and the field strength tensor (f** = 9¥a* — 9*a”) are
already given relativistically by (21) in §IIb (i7) as

0

@Jw}\ = prj’,  equivalently f* =pupj”, (53)

Vv =

where the 4-current j pv” = (pc, pv) plays the
source of f“* and the constant pur on the right-hand
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side is a fluid parameter (introduced in (5)), correspond-
ing to the permeability in the electromagnetism.

The power of the FEquivalence Principle allows the
above equation (53) (which is valid in flat Lorentz frame)
is transformed to the form in any other curved frame by
the rule of Commas replaced by Semicolons (i.e. Partial
derivatives replaced by Covariant derivatives). Namely
we have a replaced system:

Vaf™ =ppj¥, equivalently f*3 =ppj”, (54)

valid in curved gravity space, where the symbol v A de-
A4

notes covariant derivative with respect to x*.
b) Equation in local Lorentz frame under interaction

To find the equation of motion under interaction with
the background (dark) gauge field a,, we take the com-
posite Lagrangian Lg_;,; = Lrym + Lint and apply the
action principle. First let us take its variation:

0L _imt = (s(EFM d.Q) + 6(£int dQ) (55)

The variation §(Lgy df2) is given straight-forwardly by

—eMS(dr) — ¢ 'PdP2s(dr) — ¢, P ox” dla, (56)

from (40). Before carrying out its variation, the second

term Line d2 = ¢~ a,, df2 is rewritten as

¢ tpva, BPzredt = (pdiz) a, da”

(with v¥dt = da¥). Carrying out variation of this term
demands an insight into deep physical significance of the
gauge field a,. The following equivalent but twisted re-
writings (or transformations) disclose its hidden power.
Keeping the mass element M = pd®z invariant (fixed)
for the variation 9, since Liny df2 = M a, dz¥, we have

6( Line d2) =M (a, d(52") + da, da*)

v v 8&1, K v

= M(d(al,éx ) — da,dz” + e 0z dx ) (57)
v aa’l’ K v 80"@ v K

= M(d(ayéx ) — 8$de ox” + @5x dz ), (58)

where the last term of (57), (9a, /0x")dz"dx", was re-
placed with its equivalent sum (Qa,/dz")dx” dz* in the

4 §>\ fu)\ = fu?\/\ — fu?\)\ + fcx)\ ]_-wa/\ + fro F)\a/\



last expression (58) by interchanging v and . Replacing
dz" with equivalent ©” d7, we obtain

0( Ling d2) = M d(a, 0z") + M fou” dz¥ dr, (59)
where f., = 0xa, — Oy a,.

Returning the §(Lpmdf2) of (56) again and using
o0dr = —u,, déz” of (13), we find 6(Lym df2) given by

d

1 .
§(Lend) = —¢~'M (c2 —tat ;aap) 52 dr. (60)

neglecting higher order terms of O(3%) (see Kambe
(2021a) Appendix B.2 for this derivation). Since uy =
vi/c (k = 1,2,3) and d7 = cdt, the first term
c? (d/dT)u, in the parenthesis becomes (D/Dt)vg,.

Finally we find the expression for 0Lp_;p: =
0(Lrm d2) + 0(Ling df2) given by

—c M <c2 diua + %8073 — ¢ fapu? )5ma dr. (61)

pu

This is required to vanish for arbitrary dz®. Thus, the
action principle leads to
d 1

A —uy + -0,P —c¢ fas u? =0. (62)
dr P

Equivalence Principle allows this equation transformed
to the form in curved frame by replacmg d/ d7 with the
covariant derivative V with respect to z°

~ 1
A Voug + ;0(173 — ¢ fap u? =0. (63)

omitting higher order terms with respect to small 5. In
locally flat Lorentz frame of metric 7,5 with v, = cu,
(with same approximation), this is rewritten as

pVi Vo = =% (P1ap) + fapi®, % =pv’.  (64)

The first term on the right-hand side describes a force
from isotropic stress P 7.5 (o, = 1,2,3).

¢) New anisotropic stress in local Lorentz frame

The action of the background (dark) gauge field a,
generates the new term f,, j” of (64) deduced from
the interaction Lagrangina L;,;. Remarkably, the term
fav j¥ can be represented with another equivalent form

-0 M3 denoting an-isotropic stress field acting on the
fluid field (analogous to the Maxwell stress of electro-
magnetism). This is shown by using the 4-current j* of
(53) and the one below it. Substituting j” = ,u;l o\ fr>
from (53), the second term f,, j¥ of (64) becomes

for 3 = pip* fow ONfY = — 0P M. (65)

where the fluid Maxwell stress Ma g is defined (for ¢, k =
1,2,3) by My = Lelel* + Lpup LBl = we, Moy, =
My, = —ce (e x by, and Mlk = —cejer — pp bbby +

We Oig, With pup and € = 1/(ur ¢®) being parameters of
the fow field. One can show the following equality:

— 9° My = (pe + pv x b, (66)
which can be shown by using (22) and (23), where 0y =
(c710;,0k) and 0% = 1P 0y = (—c710;, 0p),

Using the relation f,, j¥ = —9° M,z of (65) and sub-

(6
stituting —9” M, into the last term of (64), we obtain

PV va = —8%(Piag) — 8° Mag, (67)
Thus, an aimed equation has been derived in local

Lorentz frame with incorporating the an-isotropic stress.
The last (67) implies that the factor P g in the sec-

ond term of stress energy tensor (46) is replaced as

Pgag = Pgap+ Mags. (68)

V.  APPLICATION TO THE DARK MATTER
EFFECT OF ROTATING GALAXIES

Now let us think how our formulation of the Gravity-
space Fluid Dynamics can be applied to the dark
matter effect of rotating spiral galaxies. Concerning
the rotating galaxies, we have currently two kinds of
cosmological-views, which are now reviewed first.

From observations of celestial objects within a spiral
galaxy in rotation, observed data enable to plot their
orbital velocities versus their distances from the galac-
tic center. The gravitational potential deduced from
visible mass distribution of stars and gases within the
galaxy, however, is not sufficient to reproduce the ob-
served velocity curve of orbital motion. On the other
hand, paradoxically enough, the recent study (McGaugh
et al. 2016) proposed a unified law (from statistical anal-
yses of about 200 galaxies) that the rotational motion of
a disk galaxy is determined entirely by the visible matter
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it contains, even if the disk is filled with unknown dark
matters. Another study by Sofue (2018) also presented
observed data from about 500 galaxies, equivalent to
those of McGaugh et al. (2016). These imply a strong
connection between the visible baryonic matters and the
physics producing the rotational motion.

Present study is taking double-sided approach both
dynamically and physically by incorporating a new dy-
namical field of gauge-field, and attacking the sys-
tem with a new physics incorporating anisotropic stress
fields. This approach is based on the general-relativistic
version of the fluid gauge theory extended to the gravi-
tational space, i.e. Gravity-space Fluid Dynamics

a) Brief description of analysis with the dark field a

Aiming at a simplified analysis, let us take a cylin-
drical coordinate frame (Z, R, ¢) and consider a typical
galaxy rotating axi-symmetrically. Suppose that a par-
ticular disk galaxy is rotating around the Z-axis with
its center at (R, Z) = (0,0) in steady rotation (9; = 0),
and assume that it keeps an axisymmetric disk-like form,
as often done in observations for analyzing galaxy data.
The disk is given by the plane Z = 0 and described
with the coordinates (R, ¢). In this circumstance, it is
assumed that v = (0,0, V(R)) and a = (0,0, A(R)).

From observed rotation velocity V(R) of a stellar ob-
ject at the distance R from the galactic center, its cen-
tripetal acceleration A, is given by A. = —V?/R (radial
acceleration toward the center). The gravitational po-
tential ®, can be estimated by the Poisson equation,
V2®, = 41Gp(Z, R) once the mass density distribution
p(Z, R) is given from observation of stars and gas in the
galaxy space (G: gravity constant). Using the potential
®, found with integration, the gravitational acceleration
Ay is given by A; = —0®,/0R.

The study of McGaugh et al. (2016) succeeded, from
statistics, to extract the fitting curve (1) connecting av-
erage values of | A.| and |A4|. On account of the property
Ac # Ay, the third term Apy is defined by

A, — Ay = Apw, (69)
which is negative. Regarding the average absolute value
|Apm|, this shows that |Apy| is given in a statistical
sense by a monotonic function of |44| with using (1).
This implies a strong connection between the gravita-
tional acceleration Ay (from visible baryonic mass) and
the physics generating the observed A, and the term
Apm. But, how the term Apjs is determined ?

b) How Ap,, is determined

Following the scenario of general relativity, the equa-
tion of Gravity-space Fluid Dynamics (67) has been de-
rived as a weak field form of small |v|/c in the previous
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section §IV. The second term —9” M5 on the right-hand
side came from the anisotropic stress Myg. Using (66),
it is replaced by the equivalent form of fluid Lorentz
force. Thus the equation (67) can be written as

pVivk=—0P + pex + p(v X b), (70)

V=D + Vo, (71)
with « replaced with £ = 1,2, 3, where Vv denotes the
covariant derivative of the fluid velocity v with respect
to time ¢ in the curved space of gravity field ®,, and
D; = 0; + v - V is the material derivative and V = (9;)
and i = 1,2,3. From (9), we have

e=—-0ia— Vo, =—Vo,, (72)
since steady rotation (9; = 0) is assumed. The term 9P
on the right-hand side of (70) is expressed as pJih in
the dissipation-free motion.> Substituting the relation
Or’P = pOrh on the right-hand side of (70), it is seen
that the density p is multiplied to all the terms of (70)
and hence can be eliminated from all the terms.

Thus, using (71), the equation (70) reduces to

Dyv+Vd, =v x b, (73)
where &, = @, + h + ¢4, with the terms VA and Ve,
absorbed to the gravity term V®, on the left-hand side
as negligibly small terms. The fluid-magnetic field b is
derived from the dark gauge-field a by b=V X a.

The radial component of Dyv of (73) is given by
—V?2/R, assuming steady, d; = 0. Then, the radial com-
ponent of the axisymmetric steady equation of motion
(73) can be written on the galactic plane (Z = 0) as

~V2/R+ 0r®, = (v x b)g, (74)

where ﬁ)g is replace by the main term ®,, and
V20, = 4nGp(Z, R), (75)
b=V xa, V xb=purpv, (76)
(vxb)p=Vby =V R 'Op(RA). (77)

5P = ph = (pe+p) is the enthalpy per unit volume defined by (41),
where € and h = e+p/p are thermodynamic variables termed the
internal energy and enthalpy per unit mass. In the dissipation-
free motion keeping the mass element M = pd3z fixed, the
entropy s is unchanged, and the variation of € is given by
de = —pdp~!. Then, the h-variation is dh = d(e+p/p) = p~ ! dp.
Then, d(P d3z) = Mdh reduces to dP = pdh per unit volume.



Comparing the two equations (69) and (74), it is seen
that both of the right-hand sides should be equated
(since A. = —V?/R and A, = —0r®,). Hence, the
term Apyy is given by (v x b) g derived from the field a.

From the present theory of Gravity-space Fluid Dy-
namics, the three terms A., A, and Apm of accelera-
tion are estimated at each position R once the observed

value of velocity V(R) is given at R. Those values can
be plotted in the diagram [A.vs. Ag] and compressed with

the curve (1) given by McGaugh et al. (2016).

One of the advantages of the analysis using the fitting
curve is that the radial accelerations, A., Ay and App,
are concerned exclusively and used. Estimate of radial
acceleration can be applied to any celestial object in
motion without regard to the magnitude of mass, either
a star, a gas cloud, or a fluid particle of space-fluid.

In addition, the simplified analysis in the present §V
assumes an axisymmetric disk galaxy in rotation with
nearly axisymmetric spherical halo surrounding the disk.
Hence the orbiting stellar objects consisting of stars, gas
clouds and space-fuids are averaged along their circu-
lar orbits. The individual motions are averaged and
smoothed out to form a circular continuous current flux
J(Z,R) = pV along the azimuthal direction ¢.

Thus, we can estimate the three acceleration terms
Ac, Ag and Apys from the theory, and compare the val-
ues obtained by computation with corresponding data
acquired from observations. Agreement of both sets of
values was quite excellent.

To show an example, the sample galaxy NGC3198 (Fig.1)
was examined here too, and the three terms A., A,
and Ap); were estimated at the particular value of
radial position R, = 19kpc where the test calcula-
tions were done in §If). Using the observed velocity
V(R,) ~ 150km-s~! as an input initial condition, A, is
given by V2/R ~ 4.0 x 107" ms~2. Results of com-
putation were as follows: Apy ~ 3.0 x 107" ms™2
and Ay ~ 1.0 x 10~ ms~2. These are consistent with
those of §If). Theoretical estimations were carried out
at other radial positions. In addition, other several sam-
ple galaxies were examined as far as observation data
are available. Agreement with the fitting curve (1) was
in fact remarkable. Details of the agreement will be re-
ported elsewhere.® Getting the agreement, it is essential
that the parameter up takes a non-zero value, which is
much smaller by O(10~*) compared to the vacuum value
of the magnetic permeability.

6 Preprint KH-2023": shown at ” Tsutomu Kambe Researchgate”.
Submitted to GJSFR (2023): Kambe and Hashiguchi, “Dark matter
effect, and physical mechanism producing orbital hyper-speed in gas-
dominated galaxies, studied relativistically .

¢) Outcomes of the analysis Innovative

Present theory provides useful numerical data which
can be compared with corresponding data of observation
of galaxies. Excellent quantitative agreement has been
found between them. From the comparison, one can
extract new findings, which are really innovative.

Firstly, the present approach according to the Gravity-
space Fluid Dynamics captures an essential feature of
the dark matter effect for galaxies with spiral arms. It
is most important to recognize that the explicit mathe-
matical expression (74) is just another expression of the
equation (69), and in addition, the computations accord-
ing to (75) ~ (77) generate results consistent with the
data of observation. The theory gives the term Apus
an explicit expression (v x b)g. Present analysis implies
that the approach according to the Gravity-space Fluid
Dynamics can capture an essential feature of the dark
matter effect observed from a number of spiral galaxies.

From a mathematical view-point, an advantage of the
present formulation is that the acceleration Apy is given
a mathematical expression (v x b)z. However, the term
b = V X a depends on the FGT gauge field a. By
the equation (76). the field a is determined from the
equation V x (V x a) = ur pv, stating that the field a
is generated (excited) by the current flux pv. Its degree
of excitation is controlled by the parameter pp (a fluid
permeability).

Secondly, from the FGT theory, the field a is introdu-
ced to ensure the mass conservation and simultaneously
drive the flow field with general anisotropic stress field,
(Kambe, 2020, 85)which is a generalization of the isotro-
pic pressure of Eulerian theory. As mentioned above, the
field @ depends on the fluid parameter pr (a fuid version
of the magnetic permeability). Note that in the current
(traditional) theory, the system does not include the field
a. Hence, the parameter pr is regarded as zero and there
is no driving mechanism to generate the field a in the
current theory. Then no agreement is found.

However, the Gravity-space Fluid Dynamics is a newly
developed theory, an extended version of the Fluid
Gauge Theory (Kambe 2021a) to the general relativ-
ity. It is natural that the theory with non-zero value
of pp gives rise to such a new field, enabling agreement
between theory and observation. If it were zero, the
agreement would not be obtained.

Present agreement between astronomical observation
and theoretical analysis is really notable. In fact, the ob-
servational data were found from a number of galaxies,

extracted from a set of about two hundreds (McGaugh
et al. 2016) and about five hundreds (gofye 2018)-

The agreement tells that a new physics is working by
the action of the background gauge field @ which is ex-
cited by the high-speed current field pv of the space
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fluid. Typical velocities |v| of order 102 km/sec are ob-
served at most halos of galaxies. This is in fact the first
case where the non-zero value of up is estimated from
natural phenomena.

VI.  SUMMARY

This is a novel approach to the cosmological issue of
the dark matter efect observed in spiral galaxies. In
cosmic space, it is essential to recognize firstly that gas
clouds are abundant and free to move in the galactic
and inter-galactic spaces. Motion of a space-cloud is
to be viewed as flow of a continuous fluid in gravity
space. Second point concerning the cosmic clouds is
that the clouds are moving at very high speed over huge
spatial scales. Their orbital speed is estimated to be of
the order 200 ~ 300 km- s~! at about 10 kpc from the
galactic center, and gas clouds are distributing widely
over outer halo parts of galaxies (Tully & Fisher (1977),
Sofue & Rubin (2001), McGaugh et al. (2016)).

Dynamical action of such space-fluids must be a new
type. Motion and dynamics of such an exotic fluid is
investigated by extending Fluid Dynamics to that in the
frame of General Relativity. The fluid flow field to be
extended to curved space is reinforced by the fluid gauge
theory equipped with a background (dark) gauge field a.
The gauge field a firstly ensures the mass conservation
of fluid flows. Hence the space fluids carry out their
motion as physically acceptable ways. Not only that, the
field a assists the flow field with transition of its stress
field from the isotropic pressure stress pd;; prevailing in
quiet states of slow motion to an-isotropic stress field
Mjy, prevailing in high-speed flow states, moving often
turbulently.

In order to capture realistic behaviors of such space
fluids and their dynamics, adequate equations of mo-
tion must be prepared. An atmosphere of gas clouds
exists over a galactic disk captured by its gravity. The
Gravity-space Fluid Dynamics thus developed captures
main feature of the dark-matter effect as the action of
the gauge field a on the space fluids. Namely, the dark-
matter effect is caused dynamically by the background
gauge field a acting on the space fluid, not by adding
new invisible (dark) matters to increase gravitation.

From the observation side, McGaugh-Lelli-Schombert
(2016) found a strong evidence from a number of galax-
ies that observed data shows existence of a functional
correlation between the observed radial acceleration
and that predicted by the observed baryon distribution
within galaxies, implying that the dark matter contri-
bution is specified by that of the baryons.

Present theory gives an explicit expression (v X b)g
to the acceleration attributed to the dark-matter effect

© 2023 Global Journals

from (74), which is associated with the gauge field a
since b = V x a. The gauge field a is determined by the
equation, V x b = up pv from (76), describing that a is
excited by the current flux pv and the degree of excita-
tion controlled by the field parameter pg. As noted in
§V, comparison between astronomical data and the data
from the theory implies that the parameter up of the
fluid gauge theory must take a non-zero value, owing to
which the high magnitude of |v| is reflected significantly
to the gauge field a.

Comparison between astronomical data and data
deduced from the theory shows excellent agreement.
It is considered that the present theory describes
dynamics of the galactic (dark) halo space where
there exists sufficient space clouds for the gauge field

a to be able act on the space fluids. Thus the galactic
inner space is connected continuously to the deep-
outer space of NFW dark halo or CDM models, from
physical point of view, by the help of the background
gauge field a without presence of dark matters.
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Append

A. Stresses, and Linked 4d-Spacetime
i. Stress fields: isotropic and an-isotropic

Equation of motion of a perfect fluid is written in the
style of FGT theory:

thvk = ajo—;ka U§k = 7p5ﬂ€7 (Jak = 132’3)7 (Al)

where p is the fluid mass-density, p the pressure field,
vi the k-th component of fluid velocity. Dy = 0; +v -V
is the material derivative, and ojx(x) is the stress field
at a 3-space point @, and a%k = —pd;i represents the
isotropic pressure stress. The FGT theory (§1I) is for-
mulated according to the special relativity of Lorentzian
metric n,, = 7" = diag(-1,1,1,1) for u,v =0,1,2,3.
The theory aims to combine two types of stress fields:

isotropic stress o, (¢) and an-isotropic stress af (z¥).

ii. Glimpse of linked 4d-spacetime, in fluid mechanics

Physical fields of the FGT theory are described by
two sets of 4-vector fields: (i) Fluid current j-vector
j¥ = pv¥, and (ii) background gauge-field 4-vector a,
(precisely one-form a,, v = 0,1,2,3), where



4 v —. UV v dxu
37 = (pe, po) = pv” = cpu”, W = (e, v) = =, (A2)
where 7 = (29 2%, 2% 23) is a space-time point with

20 = ¢t (t the time and ¢ the light velocity). The over-
lined value p denotes the proper density (i.e. the fluid
mass density p = py/1 — 42 in the instantaneously rest-
frame where § = 0, with 8 = |v|/c).

The proper time 7, which is defined by

dr? = —ds* = -, dz"dz”, (A3)

would play an important role in the variation analyses of
84. Here, using the displacement dz” of a fluid particle,
its relativistic 4-velocity is defined by w” = dz” /dr:

V_% _ 1 v
- dT (Wv Cm)’ (A4>
dr=+v/1-62d2’ = /1 — 2 cdt. (A5)

Concerning the structure of Fluid-Mechanics, the follow-
ing observation would be instructive. Namely there exist
glimpses of linked structure of 4d-space-time, which are
0,7" and j”9,, represented with 4d inner products:

0uj” = Op+V-(pv); 370y = p(0+v-V) = pDy, (A6)

where 8, = (¢719;, V). The first is the expression of the
continuity equation, and the second defines the material
derivative Dy.
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