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Galactic space is filled with interstellar clouds of neutral gases. Motion of the space-clouds is viewed
as a flow of continuous fluid in curved space with gravity. Dynamical motions of the space-fluid of
rotating galaxies are investigated by extending Fluid Dynamics to that in the frame of general relativity.
Fluid flow field to be extended to that of a relativistic theory is reinforced by the fluid gauge theory
equipped with a background (dark) gauge field conditioning the fluid continuity. The Gravity-space
Fluid Dynamics thus developed captures main feature of the dark-matter effect as the action of the
gauge field on the motion of space fluids. In the present formulation, the stress-energy tensor in the
general relativity is revised in order to take account of general nature of stress field by extending the
isotropic pressure to an-isotropic stress field.

Regarding the dark-matter effect, McGaugh-Lelli-Schombert (2016) found a strong evidence, that

shows existence of a functional correlation between the observed centripetal radial-acceleration and the
gravitational acceleration predicted by observed baryon distribution within galaxy. This implies that
the dark matter contribution is specified by the baryon distribution. Present theory is consistent with

this view and gives an explicit mathematical expression to the acceleration attributed to the dark-
matter effect. The effect is created by the action of the gauge field a. The gauge field is determined
by an equation in which the field a is excited by the current flux defined with product of fluid density

ρ and fluid velocity v, and the degree of excitation of a is controlled by a field parameter µF.

Agreement between astronomical data and the data deduced from the theory is excellent.

dark-matter-efect – space-cloud – fuid-gauge-feld – gravity – relativistic-fuid-dynamics.

The cosmological issue of dark matter effect is stud-
ied with a new approach to spiral galaxies in rotational

motion (Fig.1). To that end, it is essential to recognize
that, in cosmic space, gas clouds are abundant and free
to move under physical fields: gravity field etc.

The emission lines (such as the HI-21 cm line) in cos-

the galactic interstellar space. The neutral gases are
captured by the galactic disk via its gravitational field
and its spiral arms. Kalberla & Kerp (2009) coined it as
Galactic Atmosphere over the galactic disk. Concerning
the gas clouds moving about cosmic space, their dynam-
ical motions should be described as flows of continuous
fluids. Present study is carried out from this view on
the basis of the Fluid Gauge Theory (Kambe 2021a).

Although stars are very sparse in outer part (halo)
of our galaxy, the halo is dominated by invisible mat-

ters and actually contains considerable portion of the
total mass of the galaxy. Present approach is based on
the view that the dark matter effect might be caused

by invisible space-fluids, driven by the action of a fluid
gauge-field according to the theory. The space-fluids are
moving at very-high orbital speeds of about 200 ∼ 300

km·s−1 in the galactic space (Tully & Fisher (1977), So-
fue & Rubin (2001), McGaugh et al. (2016)) under
interaction with the galactic arms that rotate at high
speeds as well. Dynamical mechanism of the interaction
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of space-fluids with the galactic arms moving at high
orbital speeds is the target of the present investigation.

a) Motion of space clouds viewed as continuous flows

I. Introduction

ABSTRACT

Keywords:

mic        abundance of neutral gas in   space cloudsshow

Relativistic Exploration of Dark Matter Effects
in Rotating Galaxy, Studied Fluid-Dynamically
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A sample spiral galaxy in rotation:
NGC 3198 (GALEX image, NASA).

Figure 1: 

It is known that observed rotation curves of galaxies

do not match the one expected from the Keplerian law
of velocity decreasing as R−1/2 with R the distance from
the gravity center. At distances away from the center,

the stellar orbital motion tends to rotation with almost
constant velocity. This hints that certain mechanism is
working at halo parts of galaxies more conspicuously.

Present approach takes a new two-sided strategy,
namely on the one hand the theory is strengthened by
an improved action term of new stress field, on the

other hand the dark object might be space-fluids ex-
isting abundantly in cosmic space. In fact, its flow field
is reinforced by the fluid gauge theory equipped with a

background (dark) gauge field (Kambe 2021a).

According to the theory, the isotropic pressure of Eule-
rian system is extended to an-isotropic stress fields giv-

ing rise to flows of rotational nature inherently. Thus, a
new approach is formulated on the basis of the variation
principle for a perfect fluid in the presence of gravity.

The present theory reinforces the fluid flow fields with
a background (dark) gauge field. The gauge field not
only ensures the mass conservation of fluid flows, but
also assists the flow field with transition of its stress field

σjk, from the isotropic pressure stress pδjk prevailing in
quiet states of slow motion to an-isotropic stress field
Mjk prevailing in turbulent flow states.

In this regard, a past study of acoustics (Kambe 2022)
is helpful to understand the transition. In the resonance
problem studied by Kundt, increasing the strength of
acoustic excitation triggers spontaneous transition of the
acoustic field from isotropic to an-isotropic stress field.
The an-isotropic rotational field is generated by an in-

visible gauge field and responsible to formation of the
mysterious dust striations studied by Kundt (1866).

b) Field description strengthened for rotational one

An important feature of the present theory is that
it includes a new dark gauge-field aν (ν = 0, 1, 2, 3 :
relativistic 4-components). Incorporation of a non-
gravitational field aν to the gravity field is assured by
the local-flatness theorem (Schutz 1985) and the Ein-
stein Equivalence Principle (Will 1993) in the general
relativity. In addition to the gravitational Lagrangian
built of metric alone yielding curved gravity space, fluid
motions are described by new fluid Lagrangians. Thus
new terms are introduced in equations of motion. The
new terms are analogous to electromagnetic terms, but
derived for neutral fluids here. One particular term to
be remarked is the fluid Lorentz force, v× b with v the
fluid velocity and b the fluid-magnetic field from aν .

c) Fluid Lorentz force

Physics of galaxy rotation is, in general, closely tied
to the gravity field of baryonic visible matters. But in

the present case, astronomical observations state that
mutual relation between them is not straightforward.

Observing celestial objects within a spiral galaxy, their
orbital velocities are detected spectroscopically at their

respective distances from the galactic center, while the
gravitational force is estimated from the data of baryonic
visible mass distribution of stars and gases in the galaxy.

The gravity forces thus obtained are not sufficient to
reproduce the observed velocity curves at outer parts of
most galaxies. This raised issues concerning presence of
dark matters in most galaxies.

On the other hand, the recent study (McGaugh et al.
2016) proposed a universal behavior, stating that the ro-
tational motion of a disk galaxy is determined entirely

by visible matters it contains, even if the disk is filled
with unknown dark matters, paradoxically. The last
implies a strong twisted connection between the visible
matters and the physics producing the rotational mo-
tion. Possible interpretations given by the authors of
McGaugh et al. (2016) are rephrased in the following
ways: either (a) it represents the end product of galaxy

formation, or (b) it is the result of new dynamical laws
rather than dark matter, or (c) it represents new physics
of a dark sector that leads to the observed coupling.

Present study takes new double-sided approach both
dynamically and physically: namely incorporating a
new dynamical field of dark gauge-field and attacking
the system with a new physics using an-isotropic stress

d) Twisted connection between physics of galaxy
rotation and visible matters

 
fields. Therefore, present approach is related to both
categories (b) and (c), in addition, with implicitly tak-
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Few galaxies exhibit the Keplerian law v∗ ∝ R−1/2

for the stellar velocity v∗ at large distance R from the
galactic center, but the galactic rotation velocities keep
high values at large values of R, flat instead of falling.
This was recognized as early as 1950s (Sofue & Rubin
2001), and later updated to the Tully-Fischer relation
(Tully & Fisher 1977): Mbar ∝ (vH) p with p = 3.5 ∼ 4,
for the Hydrogen gas velocity vH at outer halo part of a
galaxy and the total baryonic mass Mbar of the galaxy,
even in case with substantial dark matter. The Tully-
Fisher relation does not show any variation with scale
or size of galaxy, remarked by McGaugh (2005).

e) HI-21 cm line tells a mystery from cosmic space

ing the view (a). The present approach is based on the
general-relativistic version of Fluid Gauge Theory.

  

  
  

  

  

      

      

An important mathematical facet has been found for

the galaxy dynamics by McGaugh et al. (2016), from
statistics of a large set of 153 galaxies with different
morphology, masses, sizes and gas fractions. Concern-
ing the radial accelerations Ac (toward the center) of

orbiting celestial objects of rotating galaxies, the law
says how the centripetal acceleration Ac is related to
the absolute value of gravity acceleration Ag.

To get an idea from simple analyses, let us take an
axi-symmetric cylindrical coordinate system (Z,R, ϕ)
with an axi-symmetric disk plane, defined by Z = 0.
Consider a typical galaxy rotating around its center

(R = 0, Z = 0) with the velocity (0, 0, V (R)), keeping
steady state circular rotation.

In this circumstance, the observed centripetal acceler-

ation is given by Ac = V 2(R)/R. On the other hand,
from observed mass density distribution ρ(R) within a
galaxy, the gravity potential Φg is determined by solving
∇2Φg = 4πGρ, and the gravity acceleration Ag is given
by Ag = |∂Φg/∂R| (> 0, for clarity). A fitting curve
was found by McGaugh et al. (2016) statistically, as

Ac = F(Ag) ≡
Ag

1− e−
√

Ag/A†
, (1)

where A† ≈ 1.20 × 10−10 ms−2. This implies a strong
connection between the baryonic gravity acceleration Ag

and the physics that generates the observed Ac.

f) A key relation of galaxy dynamics: McGaugh-Lelli-
Schombert observational law

Looking at lower end of Ag value (at halo part), the
curve is found to be consistent with the Tully-Fischer
relation. In fact, assuming |Ag/A†| ≪ 1 and using
Ac ≡ (vH)2/R and Ag ∝ Mbar/R

2 as R−1 → 0, the

fitting curve (1) implies Mbar ∝ (vH)4, consistent with
the Tully-Fischer relation.

The difference between Ac and Ag (if any) is ac-
counted for as the contribution ADM from dark matter
(DM): ADM = Ac−Ag. However, the centripetal accel-
eration Ac is given by the fitting function F(Ag). Thus,
the ADM should be given by F(Ag)−Ag, which is deter-
mined once Ag is known regardless of DM. This means
that the acceleration ADM (attributed to the dark mat-
ter) is coupled to the visible mass ρ giving the grav-
itational acceleration Ag. Then where exactly is the
freedom to be attributed to dark matter?

Regarding the sample galaxy NGC3198 (Fig.1), let us
try to estimate magnitudes of Ac and Ag from available
astronomical data (Venkataramani & Newell 2021). Its
rotation curve shows: V ≈ 150 km·s−1 at R ≈ 19 kpc
from the galactic center, which implies A ∗

c = V 2/R ≈
4.0 × 10−11 ms−2. Then the fitting curve (1) gives
A ∗

g ≈ 1.0 × 10−11 ms−2. From these two values, the

DM contribution is estimated by the difference:

A ∗
DM = A ∗

c −A ∗
g ≈ 3.0× 10−11 ms−2. (2)

One can remark a merit of their analysis. They are

using acceleration terms, Ac, Ag and ADM . Hence, their
arguments apply to any celestial object in accelerating
motion without regard to its magnitude of mass: a star,

a gas cloud, or a fluid particle of space-fluid.

As one of the possible theories to resolve the current

issue, the present paper proposes the Fluid Gauge The-
ory by extending the theory of fluid mechanics in flat
space to the general relativity theory in curved space
with gravity. The theory reinforces the fluid flow fields

with a background (dark) gauge field. The new field
strengthens the theory with two ways. The gauge field
not only ensures the mass conservation of fluid flows,
but also assists the flow field with transition of its stress
field σjk, from the isotropic pressure pδjk prevailing in
quiet states of slow motion to anisotropic stress field
Mjk prevailing in turbulent flows. This enables appro-
priate description for turbulent motions in cosmic space.
It is helpful to remember the case of Kundt-tube ex-

periment (§1.2) to get insight into the present issue. It
implies, ”The gauge field within the Kundt-tube is not
visible, yet creates visible dust-striations mechanically”.
This insight applies analogously to the gravitational po-

tential Φg as well: The gravitational potential Φg is not
visible, yet its derivatives ∂νΦg create visible dynamical
effect.

g) Invisible field creating visible effect

Next section 2 describes the basic fluid system in flat
space before extending to the general relativity in curved

h) Composition of the paper

Relativistic Exploration of Dark Matter Effects in Rotating Galaxy, Studied Fluid-Dynamically
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gauge theory equipped with a background (dark) gauge
field. Extension to relativistic formulation according to
the general relativity for curved space under gravity is
carried out in the section 3 for isotropic pressure field
where the stress-energy tensor of fluid motion is derived
newly from the fluid Lagrangians. The section 4 explores
what the part of the gauge field Lagrangians bring for-
ward, and derives the equation of fluid motion under
the anisotropic stress field. The dark matter effect of
rotating spiral galaxies is investigated in section 5. Last
section 6 summarises the outcomes of the present study.1

Relativistic formulation of Fluid Gauge Theory (FGT )
is presented in Kambe (2021a) in flat space, which re-
inforces representation of the stress field within flows

II. Fluid System in Flat

 

Space before
Extending to Curved Space

space. The fluid system is reinforced here by the fluid

by adding rotational nature such as turbulence. This
was achieved by extending the isotropic pressure field of
Eulerian system to general anisotropic stress fields, ac-

cording to the general gauge principle (Utiyama 1956).

According to the relativistic FGT theory (Kambe

2021a) in flat Lorentzian space, the fluid system is de-
scribed by the total Lagrangian LFGT consisting of three
components, LFGT = LFM + Lint + LGF:

LFM=−c−1(c2 + ϵ(ρ)) ρ, (3)

Lint= c−1jν aν , (4)

LGF=−(4µc)−1fνλ fνλ, (5)

fνλ = ∂νaλ − ∂λaν , ρ ≡ ρ
√
1− β2, (6)

where the overlined values denote proper values     and
Appendix A.ii ) and the Lagrangian LGF

parameter µ to be fixed later. The first Lagrangian LFM

describes a perfect fluid in motion with 4-current mass
flux jν = ρ vν defined by (A2), and the third LGF de-
scribes an action of a background gauge field aν so as to
ensure the fluid motion to satisfy mass conservation (to
be shown later), while the middle Lint describes their
mutual interaction between jν and the gauge-field aν .

a) Lagrangians

Total action of this system SFGT is defined by

SFGT ≡
∫

LFGTdΩ =

∫ [
LFM + Lint + LGF

]
dΩ , (7)

where dΩ ≡ d4xν = cdt d3x. It is helpful to consider
the form of first term LFM under non-relativistic limit
as β → 0. The expression of LFM cd3x per unit mass
(m1 ≡ ρd3x = 1) reduces to the non-relativistic form
of Lnr ≡ 1

2
m1v

2 − ϵ (with v the velocity and ϵ the spe-
cific internal energy), neglecting the rest-mass energy
−m1c

2 (Kambe 2021a). Hence it is seen that the ac-
tion LFM d4xν is a relativistic version, extended from
the classic non-relativistic Lagrangian Lnr ρd

3xdt.

The third LGF of (5) is the Lagrangian of the (dark)
gauge field represented in a form satisfying local gauge
invariance under variations of the gauge field aν (see
Kambe (2021b) §II) as well as ensuring current conser-
vation. The tensor fνλ defined in (6) is called the field

strength tensor. Its diagonal elements are all vanishing.

1 Present study was partly presented orally at Physics-2023 held at
Los Angeles, USA, 17 - 20 July 2023, and its video at ”STEMrv
- Physics” with the title ”Gauge Theory And Post-Newtonian
Gravitational Fields Of General Relativity, With Reference To
Dark Matter And Dark Space-Fluid”, by Tsutomu Kambe.

It is significant and important to recognize the follow-
ing. When the gauge field aν is represented as aν = ∂νΨ

with a scalar field Ψ(xα), then fνλ vanishes identically:

f
(Ψ)
νλ = ∂ν(∂λΨ)− ∂λ(∂νΨ) ≡ 0. (8)

It would not be an exaggeration to say that Fluid Gauge
Theory has been founded on the basis of this property.

Rewriting the field aν as (ϕ,a), two 3-vectors b

and e are defined by using the 3-space notation a =
(a1, a2, a3);

b ≡ ∇× a, e ≡ − ∂ta−∇ϕ, (9)

where b and e are introduced as a pair of fluid Maxwell
fields in the fluid system. If the gauge field aν is rep-
resented as aν = ∂νΨ, all the components fνλ and fνλ

vanish. Correspondingly, both of b and e vanish.

Next, we are going to deduce equations of motion from
the action principle. In addition, the stress field σ(x)
will be used to represent force fields acting on the fluid.

Let us consider first how the fluid motion is described,
and later consider what effect the background (dark)
field would contribute to the fluid motion.

b) Governing equations

To find the equations of fluid motion, the action prin-
ciple is applied to SFGT, by assuming the gauge field aν
fixed and vary only the position coordinate xν of fluid
particles as xν → xν + δxν (for ν = 1, 2, 3, where the

i. Equation of fluid motion

   (see includes  a     free

β= − −v /c

Relativistic Exploration of Dark Matter Effects in Rotating Galaxy, Studied Fluid-Dynamically
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particle is moving with the velocity vν = Dtx
ν). Since

the third Lagrangian LGF is invariant (no variable to be
varied), the action variation is given by

δ

∫ [
LFM dΩ + Lint dΩ

]
, (10)

which is required to vanish for arbitrary variation δxν

of particle position.
Variation of the first term LFM dΩ is non-trivial be-

cause the term xν does not appear in the definition (3)
explicitly, but it is included implicitly owing to the fact
that the integrand LFM dΩ is expressed with proper val-
ues only. But one can find its equivalent expression at
a moving frame where the fluid is in motion in the real
frame of observation, obtained with a Lorentz transfor-
mation so that the particle velocity vν = Dtx

ν appears
explicitly. From (3), such expression is given by

LFM dΩ =−c−1(c2 + ϵ(ρ)) ρ dx0 d3x

=−c (1 + c−2ϵ(ρ)) (ρd3x) dτ, (11)

with ρ = ρ
√
1− (|v|/c)2 and dτ =

√
1− (|v|/c)2 dx0.

This dτ includes the velocity |v| = |Dtx
ν |, its variation

δ(dτ) must be implemented in the variation analysis.

Then one may write the variation as

δ[LFM dΩ ] =
[
(δLf) dτ + Lf δ(dτ)

]
(ρd3x), (12)

where Lf ≡ −c (1 + c−2ϵ(ρ)). The variation is carried

out with keeping the mass element ∆m ≡ ρ d3x (within
the volume element d3x) fixed. In regard to the term
δ(dτ), we have δ(dτ2) = 2 dτ δdτ = −2ηµν dxµδdxν

from (A3). Hence, we obtain the following:

δdτ = −ηµν
dxµ

dτ
dδxν = −uν dδx

ν . (13)

Thus the expression of δ[LFM dΩ ] is deduced as

−∆m

c

(
c2

d

dτ
uν +

1

ρ
∂νp

)
δxν dτ, (14)

omitting O(β2)-terms. Regarding the second La-
grangian term Lint dΩ , its variation is deduced as

δ[Lint dΩ ] = (∆m) fνµ u
µ δxν dτ (15)

(see Appendix B.3 of Kambe (2021a)). From (14) and
(15), the summation δ[LFM dΩ ] + δ[Lint dΩ ] is given by

−c−1 (∆m)
[
c2

d

dτ
uν +

1

ρ
∂νp − c fνµ u

µ
]
dτ δxν (16)

with neglecting both higher order terms and vanish-
ing integrals with respect to τ . Requiring δ[LFM dΩ ] +
δ[Lint dΩ ] = 0 for arbitrary variation δxν , one finds

c2
d

dτ
uν +

1

ρ
∂νp− c fνµ u

µ = 0. (17)

This is rewritten for ν = 1, 2, 3 (≡ k) as

D

Dt

vk√
1− β2

+
1

ρ
∂kp− fkν v

ν = 0, (18)

where uk = (vk/[c
√
1− β2]) is used from (A4). Thus,

in the non-relativistic limit as β → 0, the equation of
motion is deduced as follows:

ρDt vk = −∂kp+ ρ fkν v
ν , (k = 1, 2, 3). (19)

This is the Euler’s equation with the additional term
ρ fkν v

ν on the right hand side. The first term −∂kp
came from the isotropic pressure stress σI

jk = −p δjk of

41 . The second is a new term that came from the
an-isotropic stress σA

jk to be given below.

aν

In order to find the equations governing aν from the
variation principle, the fluid motion vν is kept fixed and

only the gauge field aν is varied as aν → aν + δaν .
In this case, the first Lagrangian LFM is invariant,
and the action variation of remaining two is given by

δ
∫ [

Lint dΩ + LGF dΩ
]
, which is required to vanish for

arbitrary variation δaν .

First, note that δ
(
fνλ fνλ

)
= 2fνλ (δfνλ). Therefore,

variation of c (δLint + δLGF) is given by

(
jν − 1

µ

∂

∂xλ
fνλ

)
δaν . (20)

From the action principle requiring vanishing of (20) for
arbitrary variation δaν , we obtain

∂

∂xλ
fνλ = µF jν , jν = (ρc, ρv), (21)

ii. Equations of (background dark gauge field)

(Kambe 2021a), where µ of (5) is a control parameter,
hence redefined here as µF, which controls the degree
of mutual interaction between the current jν and the

tensor fνλ of the background gauge field.

(41)

Relativistic Exploration of Dark Matter Effects in Rotating Galaxy, Studied Fluid-Dynamically
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Using the definitions e = −∂ta −∇ϕ and b = ∇× a
defined in (9), the equation (21) is transformed into a
pair of equations analogous to the Maxwell equations
of Electromagnetism. In fact, with defining d and h by
d = ϵe and h = b/µF with using ϵ ≡ 1/(µF c2), the
equation (21) gives a pair of Maxwell equations:

−∂t(ϵe) + µ−1
F ∇× b = j, ∇ · (ϵe) = ρ. (22)

Definition (9) leads to another pair:

∂tb+∇× e = 0, ∇ · b = 0. (23)

iii. Equations of a, b and e

The equation of current conservation can be derived
from Eq.(21), which is directly connected to the gauge-
invariant property of the Lagrangian LGF. Applying
the divergence operator ∂ν on (21), one obtains 0 =
∂ν∂λf

νλ = µF ∂νj
ν . The middle side vanishes because

of the anti-symmetry of fνλ and the symmetry of ∂ν∂λ
to interchanging of ν and λ. Hence, total summation
leads to the current conservation equation:

c) Equation of current conservation

∂νj
ν = 0, ⇒ ∂tρ+∇ · (ρv) = 0. (24)

Thus the third LGF ensures the mass conservation.

Additional remark must be given on the mass conser-
vation. If the gauge field aν is represented as aν = ∂νΨ,
all the matrix components fνλ and fνλ of (3.7) van-

ish identically. However, even in this case (aν = ∂νΨ),
one can deduce the same current conservation, and the
system of two Lagrangians LFM and Lint defines the
whole fluid system, since the third Lagrangian vanishes

LGF ≡ 0. In fact, firstly, one can show that the variation
δ
∫
cLint dΩ =

∫
jν δaν dΩ is given by the following:∫

jν ∂νδΨdΩ = −
∫
(∂νj

ν) δΨdΩ .

The action principle requires vanishing of this integral
for arbitrary variation δΨ. Hence we obtain the same
current conservation law: ∂νj

ν = 0. Secondly, the total
action variation of (10) leads to the equation (19) with
fkν = 0, which is nothing but the Euler equation.

Thus, in the case aν = ∂νΨ, the whole fluid system
reduces to the Eulerian system:

ρDt v = −∇p, ∂tρ+∇ · (ρv) = 0. (25)

This is the essential point of the Fluid Gauge Theory.

Eulerian field, by introducing the background field aν

and covering a wider family of flow fields of a perfect
fluid (Kambe, 
In the presence of the gauge field aν , the governing

equation is given by (19), which can be expressed by an
equivalent 3-vector form, as follows:

ρDtv=−∇ p+ ρfa, (26)

fa=v × b+ e = v × b−∇ϕ− ∂ta. (27)

Note that this includes the Lorentz-type force fa in
fluid-flow field which is neutral electrically. The role of
charge density in the electromagnetism is played by the
mass density ρ. Significance of the fluid Lorentz accel-
eration fa is interpreted from the following two aspects.

Firstly, as seen in (27), the acceleration fa is appar-

ently independent of the mass density ρ although the
b-field is controlled by j = ρv as seen from (22). The
fa instead depends on the velocity v unlike the grav-

ity acceleration. In addition, it depends on the time
derivative ∂ta and rotational term ∇ × a. Hence the

The present fluid gauge theory for a perfect fluid rep-
resents a broader class of flow fields than the current

d) Significance of the theory

fa would become significant in turbulent flow fields
in which flow fields are time-dependent and rotational.

The fluid Lorentz acceleration fa is considered to be a
generalization of the pressure force −∇p, as seen next.

Secondly, physical meaning of fa may be given as fol-

lows. The force field F a ≡ ρfa is represented by the
stress field Mνk. In fact, for spatial components (i, k =
1, 2, 3), the k-th component of the force F a ≡ ρfa can

be written as follows:

(F a)
k = (ρe+ ρv × b)k =−∂νM

νk, (28)

M0k = cϵ (e× b)k, M
00 = 1

2
ϵ |e|2 + 1

2
µ−1
F |b|2 ≡ we,

M ik = −ϵ eiek − µ−1
F bibk + weδik, (29)

where ∂ν = (c−1∂t, ∂k), and µF and ϵ = 1/(µF c2) are
parameters of flow fields, The equality (ρe+ ρv× b)k =
−∂νM

νk can be shown by using (22) and (23). The
stress tensor M ik of (29) as well as the parameters ϵ
and are analogous to the Maxwell stress tensor of
electromagnetism. The term (−∇ p)k on the right-hand
side of (26) can be written as −∂j(p δ

jk), a force from
the isotropic pressure stress −p δjk. According to the
present fluid gauge theory, the state of isotropic pres-

sure stress p δjk of Eulerian system is extended to the
state of combined an-isotropic stress p δjk +M jk.

µF

an inviscid fluid).2020, §55,
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In the next section III, we try to apply theFluid Gauge
Theory to fluid flows under gravity of cosmic space. To
that end, formulation of the theory must be extended to
such a form appropriate to the general relativity.

A new approach of Gravity-space Fluid Dynamics is
taken in this section by reformulating the Fluid Gauge
Theory, in order being applicable to space-fluid flows in
curved space under gravity. This approach aims at cap-
turing how the space-fluid behaves and how the dark
matter effect is associated with fluid flows in the galac-
tic space, where the space is curved by the gravity field
and abundant neutral gas-clouds are moving under its
influence. Neutral hydrogen gas-clouds are free to move
around the cosmic space under gravity, behaving as con-
tinuous gaseous fluids, hence could be described as fluid

flows in gravity space. The neutral clouds caught by the

III. Fluid Flow in Curved Space with

Gravity (I) Isotropic Pressure Field

galactic disks are moving at hyper orbital-speeds of the
order 200 ∼ 300 km· s−1.

Its theoretical frame is formulated according to the
variational principle for the Lagrangians consisting of
the one for curved empty space built of geometry alone
and another for a perfect fluid in the presence of gravity.

In the general relativity (Einstein 1915), the Einstein
field equation takes the form:

G = κT , κ ≡ 8πG/c4 (30)

where G and T are respectively the Einstein curvature
tensor and the stress-energy tensor of a perfect fluid.
A constant parameter κ represents connection between
the gravitational geometry and the fluid motion where

G is the gravity constant and c the light speed. The
equation (30) is a simplified symbolic equation. More
detailed form will be given explicitly later with (44).

Regarding the stress-energy tensor T , it is noted that
its tensor representation is usually given, not as one de-
rived from Lagrangian, but given either a definition of a
perfect fluid, or given as a form deduced by relativistic
covariant transformation from the state at rest.

In the present section III, the currently used form of

stress-energy tensor T is derived from the relativistic
FGT-Lagrangian LFM of a perfect fluid, defined by the
equation (3). The present section derives the tensor
from LFM, by extending the Lagrangian given relativis-

tically in flat space to that in curved space. However,
the FGT-Lagrangian of a perfect fluid includes another
two Lagrangians Lint and LGF given by (4) and (5).

It must be remarked that the representation of T cur-
rently used is not sufficient to describe general rota-

tional motions of space-fluids. This is closely associated
with the isotropic nature of the pressure stress adopted.
Those insufficient aspects of Eulerian system were al-
ready mentioned in previous section. In particular, the
section II, d described its details. TheFluid Gauge The-

ory of §II was proposed to amend the inadequacy (in-
sufficiency) of the system covered by the current Eule-
rian theory. Derivation of the contributions from the
remaining two Lagrangians and extension to the general
relativity are carried out in the next section IV.

An important feature of the FGT theory is that it
takes into account a new component of a gauge-field
aν which is a non-gravitational field. Incorporation of
such a non-gravitational field to the gravity field is as-
sured in the framework of general relativity by the local-
flatness theorem (Schutz 1985) and the Einstein equiv-
alence principle (Will 1993). In addition to the well-
known gravitational Lagrangian built of metric alone
yielding gravitational curved-space, this principle en-

ables the FGT Lagrangians taken into the system. Thus,
governing equations of motion are derived for space-
fluids in motion under influence of gravity and gauge-
field ensuring the mass conservation.

Thus, in the cosmic fluid dynamics, new terms are in-
troduced to the equations of motion, having forms anal-
ogous to the electromagnetism but working for neutral

fluids. One particular term to be mentioned takes a form
analogous to the Lorentz force, v × b, where the fluid
magnetic field b is derived from the gauge field aν .

The FGT theory for fluid flows has an amazing
similarity with the gravito-magnetic field known by
the ETL-theory (Einstein-Lense-Thirring), studied by
Pfister (2007, 2012), Mashhoon (2008) and Ruggiero

& Tartaglia (2002), recently in particular by Ludwig
(2021a,b) and Srivastava et al. (2023). Although both
theories predict deviation of orbital motions from the

Keplerian, the ETL-effect is the frame-dragging, namely
a geometrical effect proportional to the small gravity
constant G, while the former FGT-effect is a dragging
by the fluid gauge field aν to ensure the fluid continuity
condition. Comparing both, it is seen below that the
gravitational ETL-effect is much smaller (in orders of
magnitude) than the fluid-mechanical FGT-effect.

Thus, the Gravity-space Fluid Dynamics is formulated
according to general relativity. In a general non-inertial
system of reference with xα = (x0, x1, x2, x3) a space-
time point and x0 = c t, the square of interval is repre-
sented in terms of the metric coefficients gαβ as

ds2 = gαβ dx
αdxβ , (31)
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Let us define the action I by

I =

∫
Ld4x =

∫
L (−g)1/2 d4x (32)

a) Hilbert action principle for gravity and space fluid

and follow the Hilbert variation principle (Hilbert
(1915), Misner et al. (2017)), where g = det gαβ , and

(−g)1/2 d4x is the proper 4-volume (e.g. Schutz (1985)
§6.2), and L ≡ (−g)1/2 L the Lagrangian density.
When one deals with the empty space, the Lagrangian

L is built of geometry alone (written as Lgeom), which
is represented by the Hilbert form (Hilbert 1915):

Lgeom ≡ 1

2κ
R, κ ≡ 8πG/c4, (33)

where R is the scalar curvature defined as the trace of
the Ricci tensor R = Rα

α.
2

When the space is not empty but filled with flows of
neutral clouds, then the Lagrangian L has an additional

term Lfluid from the clouds; thus L = Lgeom −Lfluid, or1

2 Rα
α = gανRνα, where Rαβ is the Ricci curvature tensor defined

by Rν
ανβ , and Rν

αµβ is he Riemann curvature tensor.

where the term −Lfluid is used instead of Lfluid because
the term is moved to right-hand side of equation later.
If the space fluid term Lfluid(−g)1/2 is neglected, the La-

grangian L is given only by Lgeom ≡ Lgeom (−g)1/2 =
(2κ)−1 R

√
−g, and its variation with respect to the

metric coefficient gαβ results in δL = (2κ)−1 Gαβ δg
αβ ,

where Gαβ is the Einstein curvature tensor. Then the
variation principle δL = 0 requires Gαβ = 0 for arbi-
trary variation δgαβ , which gives geometrical descrip-
tion of the empty space, namely a Lorentzian manifold

of the vacuum solution.

To find the corresponding component from the fluid
field Lfluid, the variation of Lfluid with respect to the
metric coefficient gαβ proves to be useful for generating
the stress-energy tensor T

(fluid)
αβ of the space-fluid. The

stress-energy tensor T
(fluid)
αβ gives the source term on the

right-hand side of the Einstein field equation (30). From
the Hilbert action principle, the Einstein’s geometro-
dynamics is given by

L = Lgeom (−g)1/2 − Lfluid (−g)1/2, (34)

Gαβ = κc T
(fluid)
αβ (κ = 8πG/c4). (35)

Its detailed representation is given by (44).

The action principle for the Lagrangian Lgeom =
Lgeom(−g)1/2 is well-known (Landau & Lifshitz (1975),
Hilbert (1915), Misner et al. (2017) and Wald (1984)).
Hence, only resulting final expression is given here. Vari-
ation of L of (34) with respect to gαβ is given by :

b) Variational analysis of the gravity-space fluid

δ
(
Ld4x

)
=

1

2κ
Gαβ δgαβ (−g)1/2 d4x

−
[δLfluid

δgαβ
− 1

2
gαβ Lfluid

]
δgαβ (−g)1/2 d4x, (36)

(see §21.2 of Misner et al. (2017))3 ,where Gαβ (Einstein
curvature tensor) and δ(−g)1/2 are given by

Gαβ ≡Rαβ − 1
2
δαβR, (37)

δ(−g)1/2=− 1
2
(−g)1/2 gαβ δg

αβ . (38)

3 In the section §21.2 of Misner et al. (2017), the Palatini method of
variation with respect to the Christoffel connection is also carried
out. However, it is shown that contribution from those variations
vanishes, resulting in vanishing of the covariant derivative of the
metric tensor gαβ in the present formulation.

In §2, we studied the FGT theory where the Lagrangian
LFGT was introduced. According to the equation (34),

the fluid part Lfluid ≡ Lfluid (−g)1/2 is given by LFGT,

Lfluid = LFGT = LFM + Lint + LGF. (39)

where LFM, Lint and LGF are defined in (3) ∼ (5).

Let us start considering the contribution from the first

term LFM for variation analysis. Owing to the inherent

nature of fluid motion, the Lagrangian LFM d4x is di-

vided into following two terms:

−c ρ d4x− c−1 ρ h d4x = −c M dτ − c−1 P d4x, (40)

where the firs term represents the mass-property of the
fluid of mass M and the second term representing a
thermodynamic property of continuous medium charac-
terized with an enthalpy P per unit volume:4

LFM = −c ρ− c−1ρ h(ρ)Contribution fromi.

4 The second term is taken into account from relativistic point
of view. The post-Newtonian formulations (Blenched et al. 1990

;Jaranowski et al. 2015) also take the fluid enthalpy P = ρϵ+
in their formulation. In view of the present analysis to be given
below, an alternative expression P = p+ρε̃ would be appropriate,
where the term ε̃ represents not only the thermal energy but a
certain internal energy of kinematical origin.

ρ

ρ
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M ≡ (ρ
√
1− β2) (d3x/

√
1− β2) = ρd3x,

and dτ ≡ dx0 =
√
1− β2 dx0 is the proper time.

Lgeom−FM ≡ Lgeom − LFM

Let us first examine the case of combined Lagrangian
Lgeo−F = Lgeom −LFM, where Lfluid is replaced by the

first part LFM (rather than the total: Lfluid = LFM +
Lint + LGF). Remaining parts will give new innovative

effects which are investigated in the next §IV. The present
case deduces the stress-energy tensor well-known in the

c) Governing equations of the combined system

Finally, the right-hand side of (40) is rewritten as

LFM d4x = −c M dτ − c−1 P (−g)1/2 d4x. (42)

δ
(
Lgeo−Fd4x

)
=
[ 1

2κ

(
Rαβ − 1

2
R δαβ

)
−
(δLFM

δgαβ
− 1

2
gαβLFM

)]
δgαβ (−g)1/2 d4x. (43)

Vanishing of (43) for arbitrary δgαβ leads to

Gαβ =2κ
(

1
2
gαβLFM − δLFM

δgαβ

)
= κ c Tαβ . (44)

Tαβ ≡ ρ uαuβ + c−2 P
(
uαuβ + gαβ

)
, (45)

where κc = 8πG/c3. The left-hand side of (44) is the
Einstein tensor Gαβ = Rαβ − 1

2
R δαβ , and the tensor

Tαβ on the right-hand side is the stress-energy tensor of
the perfect fluid motion (cf. Misner et al. (2017), Box-
5.1, §22.3).
The form of stress-energy tensor Tαβ of (45) is given in

standard texts (Misner et al. (2017); Will (1993); Schutz
(1985); Wald (1984)).     Tαβ dif-
ferently though slightly. However, those have a com-

mon feature of the flow field where the pressure stress is
isotropic. This must be reviewed carefully from physi-
cal view-point. One more feature in common is that no
action principle is given for its derivation.

current cosmological theory. Let us check it here now.
From (36), the action principle requires vanishing of the
following expression for arbitrary variation of δgαβ :

text shows Each

P ≡ ρh = (ρϵ+ p), (41)

and M ≡ ρd3x is the proper mass within the proper

3-volume d3x:

The fluid gauge theory generalizes the stress field from
isotropic to an-isotropic stress, improving and strength-
ening description of flow fields of rotational nature
or time-dependent rotational turbulent motions. The
derivation is based on the action principle.

perfect fuid is given by (45):

Tαβ = Quαuβ + c−2 P gαβ , (46)

where P = p + ρϵ and Q ≡ ρ + c−2P. Applying the
divergence operator ∇α to the first leg α, we obtain
local conservation law of the energy-momentum:

∇αTαβ =
[
uα∇αQ+Q (∇αuα)

]
uβ

+Q (uα∇α)uβ + c−2 ∇βP = 0. (47)

The vanishing of ∇αTαβ is implied by the Bianchi iden-
tity (e.g. Schutz (1985) §6.6).

i. Cosmological Fluid Dynamics: Equations of motion

tensorStress energy of a

(a) Parallel component to uβ (Continuity equation) :

Let us first take the component along the 4-velocity
uβ of this equation (see (Misner et al. 2017) §22.3):

0 = uβ∇αTαβ =−uα∇αρ− (ρ+ c−2P) (∇αuα).(48)

This reduces to the equation of mass conservation (24):

∂tρ+∇ · (ρv) = 0, (49)

by noting that uα∇α = uα∇α = Dt = ∂t + v · ∇, and
∇αuα = ∇αu

α = ∇·v (see (A6) for ρ = 1.), and neglect-
ing the last term c−2P under the assumption β2 ≪ 1.

(b) Orthogonal component (Equation of motion):

Let us consider the three other components orthogo-
nal to the 4-velocity uβ of ∇αTαβ (= 0). The following
Orthogonal Projection tensor Z is useful:

Z ≡ gµβ + uµuβ . (50)

In order to pluck them out of ∇αTαβ = 0, we take the
contraction of Z with ∇αTαβ = 0:

0 = Z ∇αTαβ = (ρ+ c−2P) (uα∇α)u
µ

+c−2 ∇µP + c−2 uµ(uβ∇β)P, (51)
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where the factor (uα∇α)u
µ on the right-hand side be-

comes c−2Dtv
µ with neglecting terms of O(β2). Thus

vanishing of the last expression (51) reduces to

ρDtv
µ +∇µP = ρ (∂t + v · ∇)vµ +∇µP = 0, (52)

(cf. (A6)) with omitting small terms of O(β2). This is
the Euler’s equation of motion for a perfect fluid.

In the previous section, the action principle was ap-
plied to the composite Lagrangians Lgeom − LFM, and
the Euler’s equation of motion was derived for a per-

fect fluid from the Bianchi identity. In addition, the
Lagrangian LFM yields the stress-energy tensor T which

is used currently. However, the action principle was ap-

        
IV. Fluid Flow In Curved Space By 

Gravity (II) New Anisotropic Stress 

Field

plied to only one term of the Lagrangian LFM, not to
the total Lagrangian LFGT of (39) including two more
terms: Lint and LGF. This section explores new mecha-

nism which these two terms bring forward. Thus, new
anisotropic stress field is introduced into the flow field
of space-fluids.

Main concern is the stress field within the flow field.
In the previous section, it is represented with the term
P gαβ of Tαβ of (46). This results in the last term of
(52) for the Gravito-space Fluid Dynamics. In ordinary

Eulerian fluid dynamics, this term corresponds to the
pressure gradient ∇p.

The FGT theory includes a new component of gauge

field aν(x
α). In addition to the gravitational La-

grangian Lgeom of (33) yielding curved space, the non-
gravitational Lagrangians Lint and LGF are incorpo-

rated here according to the local-flatness theorem and
equivalence principle (Schutz (1985); Will (1993); Mis-
ner et al. (2017)).

According to the local flatness theorem (Schutz (1985)
§6.2), the relativistic equations derived in §II should be
valid as well at a locally-flat Lorentz frame in curved

a) Incorporation of gauge field: Equivalence Principle

gravity space. Equations governing the gauge field aν
and the field strength tensor (f νλ = ∂νaλ − ∂λaν) are
already given relativistically by (21) in § ii) as

∂

∂xλ
fνλ = µF jν , equivalently fνλ

,λ = µF jν , (53)

where the 4-current jν ≡ ρ vν = (ρc, ρv) plays the
source of fνλ, and the constant µF on the right-hand

side is a fluid parameter (introduced in (5)), correspond-
ing to the permeability in the electromagnetism.

The power of the Equivalence Principle allows the
above equation (53) (which is valid in flat Lorentz frame)
is transformed to the form in any other curved frame by
the rule of Commas replaced by Semicolons (i.e. Partial
derivatives replaced by Covariant derivatives). Namely
we have a replaced system:

II  b

)

∇̂λ f
νλ = µF jν , equivalently fνλ

;λ = µF jν , (54)

valid in curved gravity space, where the symbol ∇̂λ de-
notes covariant derivative with respect to xλ.4

To find the equation of motion under interaction with
the background (dark) gauge field aν , we take the com-

posite Lagrangian LF−int ≡ LFM + Lint and apply the
action principle. First let us take its variation:

δLF−int = δ(LFM dΩ) + δ(Lint dΩ). (55)

4 ∇̂λ fνλ ≡ fνλ
;λ = fνλ

,λ + fαλ Γν
αλ + fνα Γλ

αλ

b) Equation in local Lorentz frame under interaction

The variation δ(LFM dΩ) is given straight-forwardly by

−cM δ(dτ)− c−1P d3x δ(dτ)− c−1 ∂νP δxν d4x, (56)

from (40). Before carrying out its variation, the second
term Lint dΩ = c−1jν aν dΩ is rewritten as

c−1ρ vν aν d
3x cdt = (ρ d3x) aν dx

ν

(with vνdt = dxν). Carrying out variation of this term
demands an insight into deep physical significance of the

gauge field aν . The following equivalent but twisted re-
writings (or transformations) disclose its hidden power.
Keeping the mass element M = ρ d3x invariant (fixed)
for the variation δ, since Lint dΩ = M aν dx

ν , we have

δ(Lint dΩ)=M
(
aν d(δx

ν) + δaν dx
ν
)

= M
(
d(aνδx

ν)− daνδx
ν +

∂aν
∂xκ

δxκ dxν
)

(57)

= M
(
d(aνδx

ν)− ∂aν
∂xκ

dxκδxν +
∂aκ
∂xν

δxνdxκ
)
, (58)

where the last term of (57), (∂aν/∂x
κ)δxκdxν , was re-

placed with its equivalent sum (∂aκ/∂x
ν)δxν dxκ in the
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    last expression (58) by interchanging ν and κ. Replacing
dxκ with equivalent uκ dτ , we obtain

δ(Lint dΩ) = M d(aν δx
ν) +M fνκ u

κ δxν dτ, (59)

where fκν = ∂κaν − ∂νaκ.
Returning the δ(LFM dΩ) of (56) again and using

δdτ = −uν dδx
ν of (13), we find δ(LFM dΩ) given by

δ(LFMdΩ) = −c−1M
(
c2

d

dτ
uα+

1

ρ
∂αP

)
δxα dτ . (60)

neglecting higher order terms of O(β2) (see Kambe
(2021a) Appendix B.2 for this derivation). Since uk =
vk/c (k = 1, 2, 3) and dτ = cdt, the first term
c2 (d/dτ)uα in the parenthesis becomes (D/Dt)vα.

Finally we find the expression for δLF−int =
δ(LFM dΩ) + δ(Lint dΩ) given by

− c−1 M
(
c2

d

dτ
uα +

1

ρ
∂αP − c fαβ u

β
)
δxα dτ . (61)

This is required to vanish for arbitrary δxα. Thus, the
action principle leads to

c2
d

dτ
uα +

1

ρ
∂αP − c fαβ u

β = 0. (62)

Equivalence Principle allows this equation transformed
to the form in curved frame by replacing d/dτ with the

covariant derivative ∇̂ with respect to x0:

c2 ∇̂0 uα +
1

ρ
∂αP − c fαβ u

β = 0. (63)

omitting higher order terms with respect to small β. In
locally flat Lorentz frame of metric ηαβ with vα = c uα

(with same approximation), this is rewritten as

ρ ∇̂t vα = −∂β(P ηαβ) + fαβ j
β , jβ = ρ vβ . (64)

The first term on the right-hand side describes a force
from isotropic stress P ηαβ (α, β = 1, 2, 3).

The action of the background (dark) gauge field aν
generates the new term fαν j

ν of (64) deduced from

the interaction Lagrangina Lint. Remarkably, the term

c) New anisotropic stress in local Lorentz frame

fαν j
ν can be represented with another equivalent form

− ∂βMαβ denoting an-isotropic stress field acting on the
fluid field (analogous to the Maxwell stress of electro-
magnetism). This is shown by using the 4-current jν of
(53) and the one below it. Substituting jν = µ−1

F ∂λf
νλ

from (53), the second term fαν j
ν of (64) becomes

fαν j
ν = µ−1

F fαν ∂λf
νλ = − ∂βMαβ . (65)

where the fluid Maxwell stress Mαβ is defined (for i, k =
1, 2, 3) by M00 = 1

2
ϵ |e|2 + 1

2
µ−1
F |b|2 ≡ we, M0k =

M0k = −cϵ (e × b)k, and Mik = −ϵ eiek − µ−1
F bibk +

we δik, with µF and ϵ = 1/(µF c2) being parameters of
the fow field.     

− ∂βMkβ = (ρe+ ρv × b)k , (66)

which can be shown by using (22) and (23), where ∂λ =
(c−1∂t, ∂k) and ∂β = ηβλ∂λ = (−c−1∂t, ∂k),

Using the relation fαν j
ν = −∂βMαβ of (65) and sub-

stituting −∂βMαβ into the last term of (64), we obtain

ρ ∇̂t vα = −∂β(P ηαβ)− ∂βMαβ , (67)

Thus, an aimed equation has been derived in local
Lorentz frame with incorporating the an-isotropic stress.

     One can show the following equality:

The last 67 implies that the factor P gαβ in the sec-

ond term of stress energy tensor (46) is replaced as

P gαβ ⇒ P gαβ +Mαβ . (68)

Now let us think how our formulation of the Gravity-
space Fluid Dynamics can be applied to the dark
matter effect of rotating spiral galaxies. Concerning
the rotating galaxies, we have currently two kinds of

cosmological-views, which are now reviewed first.

From observations of celestial objects within a spiral
galaxy in rotation, observed data enable to plot their

orbital velocities versus their distances from the galac-
tic center. The gravitational potential deduced from
visible mass distribution of stars and gases within the
galaxy, however, is not sufficient to reproduce the ob-
served velocity curve of orbital motion. On the other
hand, paradoxically enough, the recent study (McGaugh
et al. 2016) proposed a unified law (from statistical anal-

V. Application to the Dark Matter 

Effect of Rotating Galaxies

(67)

yses of about 200 galaxies) that the rotational motion of
a disk galaxy is determined entirely by the visible matter
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it contains, even if the disk is filled with unknown dark
matters. Another study by Sofue (2018) also presented
observed data from about 500 galaxies, equivalent to
those of McGaugh et al. (2016). These imply a strong
connection between the visible baryonic matters and the
physics producing the rotational motion.

Present study is taking double-sided approach both
dynamically and physically by incorporating a new dy-
namical field of gauge-field, and attacking the sys-
tem with a new physics incorporating anisotropic stress
fields. This approach is based on the general-relativistic
version of the fluid gauge theory extended to the gravi-
tational space, i.e. Gravity-space Fluid Dynamics

Aiming at a simplified analysis, let us take a cylin-
drical coordinate frame (Z,R, ϕ) and consider a typical
galaxy rotating axi-symmetrically. Suppose that a par-
ticular disk galaxy is rotating around the Z-axis with
its center at (R,Z) = (0, 0) in steady rotation (∂t = 0),

and assume that it keeps an axisymmetric disk-like form,
as often done in observations for analyzing galaxy data.
The disk is given by the plane Z = 0 and described

with the coordinates (R,ϕ). In this circumstance, it is
assumed that v = (0, 0, V (R)) and a = (0, 0, A(R)).

From observed rotation velocity V (R) of a stellar ob-
ject at the distance R from the galactic center, its cen-

a) Brief description of analysis with the dark field 𝑎𝑎

tripetal acceleration Ac is given by Ac = −V 2/R (radial
acceleration toward the center). The gravitational po-
tential Φg can be estimated by the Poisson equation,

∇2Φg = 4πGρ(Z,R) once the mass density distribution
ρ(Z,R) is given from observation of stars and gas in the
galaxy space (G: gravity constant). Using the potential

Φg found with integration, the gravitational acceleration
Ag is given by Ag = −∂Φg/∂R.

The study of McGaugh et al. (2016) succeeded, from
statistics, to extract the fitting curve (1) connecting av-

erage values of |Ac| and |Ag|. On account of the property
Ac ̸= Ag, the third term ADM is defined by

Ac −Ag = ADM, (69)

which is negative. Regarding the average absolute value
|ADM|, this shows that |ADM| is given in a statistical
sense by a monotonic function of |Ag| with using (1).
This implies a strong connection between the gravita-
tional acceleration Ag (from visible baryonic mass) and
the physics generating the observed Ac and the term
ADM. But, how the term ADM is determined ?

Following the scenario of general relativity, the equa-

tion of Gravity-space Fluid Dynamics (67) has been de-
rived as a weak field form of small |v|/c in the previous

b) How ADM is determined

section §IV. The second term−∂βMαβ on the right-hand
side came from the anisotropic stress Mαβ . Using (66),
it is replaced by the equivalent form of fluid Lorentz
force. Thus the equation (67) can be written as

ρ ∇̂t vk =−∂kP + ρek + ρ(v × b)k , (70)

∇̂tv≡Dtv +∇Φg, (71)

with α replaced with k = 1, 2, 3, where ∇̂tv denotes the
covariant derivative of the fluid velocity v with respect
to time t in the curved space of gravity field Φg, and
Dt = ∂t + v · ∇ is the material derivative and ∇ = (∂i)
and i = 1, 2, 3. From (9), we have

e = −∂ta−∇ϕa = −∇ϕa, (72)

since steady rotation (∂t = 0) is assumed. The term ∂kP
on the right-hand side of (70) is expressed as ρ ∂kh in

the dissipation-free motion.5 Substituting the relation
∂kP = ρ ∂kh on the right-hand side of (70), it is seen
that the density ρ is multiplied to all the terms of (70)
and hence can be eliminated from all the terms.

Thus, using (71), the equation (70) reduces to

Dtv +∇Φ̂g = v × b, (73)

where Φ̂g ≡ Φg + h + ϕa, with the terms ∇h and ∇ϕa

absorbed to the gravity term ∇Φg on the left-hand side
as negligibly small terms. The fluid-magnetic field b is
derived from the dark gauge-field a by b = ∇× a.

The radial component of Dtv of (73) is given by
−V 2/R, assuming steady, ∂t = 0. Then, the radial com-
ponent of the axisymmetric steady equation of motion
(73) can be written on the galactic plane (Z = 0) as

−V 2/R+ ∂RΦg = (v × b)R, (74)

where Φ̂g is replace by the main term Φg, and

∇2Φg = 4πGρ(Z,R), (75)

b = ∇× a, ∇× b = µF ρv, (76)

(v × b)R = V bZ = V R−1∂R(RA). (77)

5 P ≡ ρh = (ρϵ+p) is the enthalpy per unit volume defined by (41),
where ϵ and h = ϵ+p/ρ are thermodynamic variables termed the
internal energy and enthalpy per unit mass. In the dissipation-
free motion keeping the mass element M = ρ d3x fixed, the
entropy s is unchanged, and the variation of ϵ is given by
dϵ = −p dρ−1. Then, the h-variation is dh = d(ϵ+p/ρ) = ρ−1 dp.
Then, d(P d3x) = Mdh reduces to dP = ρ dh per unit volume.
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be plotted in the diagram [Acvs . Ag

the curve (1) given by McGaugh et al. (2016).

One of the advantages of the analysis using the fitting
curve is that the radial accelerations, Ac, Ag and ADM ,
are concerned exclusively and used. Estimate of radial
acceleration can be applied to any celestial object in
motion without regard to the magnitude of mass, either
a star, a gas cloud, or a fluid particle of space-fluid.

In addition, the simplified analysis in the present §V
assumes an axisymmetric disk galaxy in rotation with
nearly axisymmetric spherical halo surrounding the disk.

Hence the orbiting stellar objects consisting of stars, gas
clouds and space-fuids are averaged along their circu-

lar orbits. The individual motions are averaged and

smoothed out to form a circular continuous current flux
J(Z,R) = ρ V along the azimuthal direction ϕ.

Thus, we can estimate the three acceleration terms

Ac, Ag and ADM from the theory, and compare the val-
ues obtained by computation with corresponding data
acquired from observations. Agreement of both sets of
values was quite excellent.

and compressed with

Comparing the two equations (69) and (74), it is seen
that both of the right-hand sides should be equated
(since Ac = −V 2/R and Ag = −∂RΦg). Hence, the
term ADM is given by (v×b)R derived from the field a.

From the present theory of Gravity-space Fluid Dy-
namics, the three terms Ac, Ag and ADM of accelera-
tion are estimated at each position R once the observed
value of velocity V (R) is given at R. Those values can

To show an example, the sample galaxyNGC3198

was examined here too, and the three terms Ac, Ag

and ADM were estimated at the particular value of

radial position R∗ = 19 kpc where the test calcula-
tions were done in §I  . Using the observed velocity

V (R∗) ≈ 150km·s−1 as an input initial condition, Ac is

given by V 2/R ≈ 4.0 × 10−11 ms−2. Results of com-
putation were as follows: ADM ≈ 3.0 × 10−11 ms−2

and Ag ≈ 1.0 × 10−11 ms−2. These are consistent with
those of §I . Theoretical estimations were carried out

at other radial positions. In addition, other several sam-
ple galaxies were examined as far as observation data
are available. Agreement with the fitting curve (1) was
in fact remarkable. Details of the agreement will be re-
ported elsewhere.6 Getting the agreement, it is essential
that the parameter µF takes a non-zero value, which is
much smaller by O(10−4) compared to the vacuum value
of the magnetic permeability.

(Fig. 1)

f)

f)

Present theory provides useful numerical data which
can be compared with corresponding data of observation
of galaxies. Excellent quantitative agreement has been
found between them. From the comparison, one can
extract new findings, which are really innovative.

c) Outcomes of the analysis Innovative

Firstly, the present approach according to the Gravity-
space Fluid Dynamics captures an essential feature of
the dark matter effect for galaxies with spiral arms. It
is most important to recognize that the explicit mathe-
matical expression (74) is just another expression of the
equation (69), and in addition, the computations accord-
ing to (75) ∼ (77) generate results consistent with the
data of observation. The theory gives the term ADM

an explicit expression (v×b)R. Present analysis implies
that the approach according to the Gravity-space Fluid
Dynamics can capture an essential feature of the dark
matter effect      
From a mathematical view-point, an advantage of the

present formulation is that the acceleration ADM is given

a mathematical expression (v× b)R. However, the term

6 ”Preprint KH-2023”: shown at ”Tsutomu Kambe Researchgate”.

b = ∇ × a depends on the FGT gauge field a. By
the equation (76). the field a is determined from the

equation ∇× (∇× a) = µF ρv, stating that the field a
is generated (excited) by the current flux ρv. Its degree
of excitation is controlled by the parameter µF (a fluid
permeability).
Secondly, from the FGT theory, the a is introdu-

to ensure the mass conservation and
drive the flow field with general anisotro

which is a generalization of the isotro-

     from a number of spiral galaxies.observed   

Submitted to GJSFR (2023): Kambe and Hashiguchi, “Dark matter 
effect, and physical mechanism producing orbital hyper-speed in gas-
dominated galaxies, studied relativistically .

of Eulerian theory. As mentioned above, the
a depends on the fluid parameter µF (a fuid version
magnetic permeability). Note that in the current

ditional) theory, the system does not include the field

a. Hence, the parameter µF is regarded as zero and there
is no driving mechanism to generate the field a in the
current theory. Then no agreement is found.

However, the Gravity-space Fluid Dynamics is a newly
developed theory, an extended version of the Fluid
Gauge Theory (Kambe 2021a) to the general relativ-
ity. It is natural that the theory with non-zero value
of µF gives rise to such a new field, enabling agreement
between theory and observation. If it were zero, the

agreement would not be obtained.

Present agreement between astronomical observation
and theoretical analysis is really notable. In fact, the ob-
servational data were found from a number of galaxies,
extracted from a set of about two hundreds (McGaugh
et al. 2016) and about five hundreds (Sofue 2018).

The agreement tells that a new physics is working by
the action of the background gauge field a which is ex-
cited by the high-speed current field ρv of the space

[

(tra
theof

field

pressurepic

pic stress
simultane

field

ously

field,

(Kambe,  2020, §5)

ced
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This is a novel approach to the cosmological issue of
the dark matter efect observed  
cosmic space, it is essential to recognize firstly that gas
clouds are abundant and free to move in the galactic
and inter-galactic spaces. Motion of a space-cloud is
to be viewed as flow of a continuous fluid in gravity
space. Second point concerning the cosmic clouds is
that the clouds are moving at very high speed over huge
spatial scales. Their orbital speed is estimated to be of
the order 200 ∼ 300 km· s−1 at about 10 kpc from the
galactic center, and gas clouds are distributing widely
over outer halo parts of galaxies (Tully & Fisher (1977),

Sofue & Rubin (2001), McGaugh et al. (2016)).

VI. Summary

Dynamical action of such space-fluids must be a new
type. Motion and dynamics of such an exotic fluid is
investigated by extending Fluid Dynamics to that in the

frame of General Relativity. The fluid flow field to be
extended to curved space is reinforced by the fluid gauge
theory equipped with a background (dark) gauge field a.

The gauge field a firstly ensures the mass conservation
of fluid flows. Hence the space fluids carry out their
motion as physically acceptable ways. Not only that, the
field a assists the flow field with transition of its stress

field from the isotropic pressure stress pδjk prevailing in

  spiral galaxies. Inin

fluid. Typical velocities |v| of order 102 km/sec are ob-
served at most halos of galaxies. This is in fact the first
case where the non-zero value of µF is estimated from
natural phenomena.

In order to capture realistic behaviors of such space
fluids and their dynamics, adequate equations of mo-
tion must be prepared. An atmosphere of gas clouds
exists over a galactic disk captured by its gravity. The
Gravity-space Fluid Dynamics thus developed captures
main feature of the dark-matter effect as the action of
the gauge field a on the space fluids. Namely, the dark-
matter effect is caused dynamically by the background
gauge field a acting on the space fluid, not by adding
new invisible (dark) matters to increase gravitation.

From the observation side, McGaugh-Lelli-Schombert
(2016) found a strong evidence from a number of galax-
ies that observed data shows existence of a functional

correlation between the observed radial acceleration
and that predicted by the observed baryon distribution
within galaxies, implying that the dark matter contri-
bution is specified by that of the baryons.

quiet states of slow motion to an-isotropic stress field
Mjk prevailing in high-speed flow states, moving often

turbulently.

Present theory gives an explicit expression (v × b)R
to the acceleration attributed to the dark-matter effect

from (74), which is associated with the gauge field a
since b = ∇×a. The gauge field a is determined by the
equation, ∇× b = µF ρv from (76), describing that a is
excited by the current flux ρv and the degree of excita-
tion controlled by the field parameter µF. As noted in
§V, comparison between astronomical data and the data

from the theory implies that the parameter µF of the
fluid gauge theory must take a non-zero value, owing to
which the high magnitude of |v| is reflected significantly
to the gauge field a.

The author would like to express
thanks to Prof. Emeritus Yoshiaki Sofue (Univer-

sity of Tokyo) for discussions on galaxies and rotation
curves. Thanks are also due to the friend of mine,
Masanori Hashiguchi (Guest Scholar, Meiji Institute for
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Advanced Study of Mathematical Sciences, Meiji Uni-

versity, Tokyo, Japan) for a number of communications
on the subject matter of this study. Formatting of the
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Comparison between astronomical data and data 
deduced from the theory shows excellent agreement. 
It is considered that the present theory describes 
dynamics of the galactic (dark) halo space where 
there exists sufficient space clouds for the gauge field 
𝑎𝑎 to be able act on the space fluids. Thus the galactic 
inner space is connected continuously to the deep-
outer space of NFW dark halo or CDM models, from 
physical point of view, by the help of the background 
gauge field 𝑎𝑎 without presence of dark matters.

Equation of motion of a perfect fluid is written in the
style of FGT theory:

ρDtvk = ∂jσI
jk, σI

jk = −p δjk, (j, k = 1, 2, 3), (A1)

where ρ is the fluid mass-density, p the pressure field,
vk the k-th component of fluid velocity. Dt ≡ ∂t + v · ∇
is the material derivative, and σjk(x) is the stress field
at a 3-space point x, and σI

jk = −p δjk represents the
isotropic pressure stress. The FGT theory (§II) is for-
mulated according to the special relativity of Lorentzian
metric ηµν = ηµν = diag(−1, 1, 1, 1) for µ, ν = 0, 1, 2, 3.

The theory aims to combine two types of stress fields:
isotropic stress σI

jk(x
ν) and an-isotropic stress σA

jk(x
ν).

Append

Stresses, and Linked 4d-Spacetime

i. Stress fields: isotropic and an-isotropic

A.

Physical fields of the FGT theory are described by

two sets of 4-vector fields: (i) Fluid current 4-vector
jν = ρ vν , and (ii) background gauge-field 4-vector aν
(precisely one-form aν , ν = 0, 1, 2, 3), where

ii. Glimpse of linked 4d-spacetime, in fluid mechanics
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jν = (ρc, ρv) = ρ vν = cρuν , vν = (c,v) =
dxν

dt
, (A2)

where xν = (x0, x1, x2, x3) is a space-time point with
x0 = c t (t the time and c the light velocity). The over-

lined value ρ denotes the proper density (i.e. the fluid
mass density ρ = ρ

√
1− β2 in the instantaneously rest-

frame where β = 0, with β ≡ |v|/c).
The proper time τ , which is defined by

dτ2 = −ds2 = −ηνµdx
µdxν , (A3)

would play an important role in the variation analyses of
§4. Here, using the displacement dxν of a fluid particle,
its relativistic 4-velocity is defined by uν = dxν/dτ :

uν =
dxν

dτ
= (

1√
1− β2

,
v

c
√
1− β2

), (A4)

dτ ≡
√
1− β2 dx0 =

√
1− β2 cdt. (A5)

Concerning the structure of Fluid-Mechanics, the follow-

ing observation would be instructive. Namely there exist
glimpses of linked structure of 4d-space-time, which are
∂νj

ν and jν∂ν , represented with 4d inner products:

∂νj
ν = ∂tρ+∇·(ρv); jν∂ν = ρ (∂t+v·∇) ≡ ρDt, (A6)

where ∂ν = (c−1∂t,∇). The first is the expression of the
continuity equation, and the second defines the material

derivative Dt.
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