

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A PHYSICS AND SPACE SCIENCE

Volume 23 Issue 9 Version 1.0 Year 2023

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals

Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Quark-Colorization of Cabibbo-Kobayashi-Maskawa Matrix CKM

By ShaoXu Ren

Tongji University

Abstraction- This paper proposes an interesting representation $V^{CKM}(q_{RGB}, \Phi, \xi)$ of Cabibbo-Kobayashi-Maskawa Matrix CKM, which based on scalar products of quark color quantum numbers q_R, q_G, q_B , or q_{RGB} (00.1). This representation is called colorization of CKM in weak interaction. The colors of down-type quarks q_w , ($w=d, s, b$) in the quarkcolor scalar products of CKM are "Color-Broken, $\xi \neq 0$, which results in isospin $I_3(q_w)$ to be violated in weak interaction, further charges $Q_{dsb}^{CKM}(\xi_{rw})$, to be a slight deviated from $-\frac{1}{3}e$ of SM theoretical value. A short discussion of possible existence of higher-charges of quark q is given in Epilogue.

Keywords: cabibbo-kobayashi-maskawa matrix CKM, quark-colorization, quarkcolor scalar product, isospin I_3 be conserved and be broken, weak interaction pairing $\vec{\Phi}$, color-broken.

GJSFR-A Classification: FOR Code: 0202

QUARKCOLORIZATION OF CABIBBO-KOBAYASHI-MASKAWA MATRIX CKM

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Quark-Colorization of Cabibbo-Kobayashi-Maskawa Matrix CKM

ShaoXu Ren

Abstraction-

This paper proposes an interesting representation $V^{CKM}(q_{RGB}, \Phi, \xi)$ of Cabibbo-Kobayashi-Maskawa Matrix CKM, which based on scalar products of quark color quantum numbers q_R, q_G, q_B , or q_{RGB} (00.1). This representation is called colorization of CKM in weak interaction. The colors of down-type quarks q_w , ($w=d, s, b$) in the quarkcolor scalar products of CKM are "Color-Broken, $\xi \neq 0$ ", which results in isospin $I_3(q_w)$ to be violated in weak interaction, further charges $Q_{dsb}^{CKM}(\xi_{rw})$, to be a slight deviated from $-\frac{1}{3}e$ of SM theoretical value. A short discussion of possible existence of higher-charges of quark q is given in Epilogue.

Keywords: Cabibbo-Kobayashi-Maskawa Matrix CKM, Quark-Colorization, quarkcolor scalar product, Isospin I_3 be conserved and be broken, weak interaction pairing $\vec{\Phi}$, color-broken,

Contents

0. Introduction

1. Quarkcolor Scalar Products in CKM Matrix

2. Isospin I_3 Be Conserved in CKM Matrix

3. Isospin I_3 Be Broken in CKM Matrix

Conclusions

Epilogue

References

Author: Institute of Physical Science and Engineering, Tongji University, 200092, Shanghai, China. e-mail: shaoxu-ren@hotmail.com

0. INTRODUCTION

The three-colors R, G, B of quarks is really a curious and excellent concept in monder particle physics. In Standard Model SM, R, G, B are used to treat strong interaction quark classification and weak interaction flavor-transitions among particles in different generations.

In previous papers [1] when discussing SM, Colous Spectrum Diagram of Flavour CSDF is introduced by Spin Topological Space STS math frame [2], in which the concretization of color values q_R, q_G, q_B of each quark can be selected from the third components $\pi_3(q)$ of one-sixth spin $\vec{\pi}(q)$ below

$$\pi_3(q) = \dots, \frac{-29}{6}, \frac{-23}{6}, \frac{-17}{6}, \frac{-11}{6}, \frac{-5}{6}, \frac{+1}{6}, \frac{+7}{6}, \frac{+13}{6}, \frac{+19}{6}, \frac{+25}{6}, \dots \subseteq q_{RGB} \equiv q_R, q_G, q_B \quad (00.1)$$

$$\vec{\pi}(q) \times \vec{\pi}(q) = i\vec{\pi}(q) \quad (00.2)$$

To discuss hadronic constiteunts in strong interaction [3], *colored quark*, $q(\chi, \alpha) = q(\chi) + q_\alpha$ is introduced (where quark spin $q(\chi)$, $\chi = \uparrow, \downarrow$ and quark color $q_\alpha = q_{RGB}$ (00.1), $\alpha = R, G, B$). We will again make use of quark color q_α , turn to diisccuss weak interaction in this paper.

- 1) One of the most distinguishing between weak interaction and strong interaction is the behavior of isospin of particle: The third isospin component I_3 and total isospin I are conserved in strong interaction. but both I_3 and I are not invariant in weak interaction, that means flavor are not " pure ", there are flavor-transitions among particles in different generations. Now I_3 be violated, be broken. How to devise a beautiful math platform to demonstrate such kind process of physical values of I_3 ?

Because these colors q_α or q_R, q_G, q_B can offer an unified isospin $I_3(q)$ representation [1] for all six quarks below. so we decide to use $I_3(q)$ (0.0) to research weak interaction following

$$I_3(q) = \frac{1}{3} (q_R + q_G + q_B) \equiv I_3(q_{RGB}) \quad (0.0)$$

Or

$$\vec{u} = (u_R, u_G, u_B) = \left(\frac{-5}{6}, \frac{+1}{6}, \frac{+13}{6} \right), \quad I_3(u) = \frac{1}{3} \left(\frac{-5}{6} + \frac{+1}{6} + \frac{+13}{6} \right) = \frac{+1}{2} \quad (0.1)$$

$$\vec{d} = (d_R, d_G, d_B) = \left(\frac{-11}{6}, \frac{-5}{6}, \frac{+7}{6} \right), \quad I_3(d) = \frac{1}{3} \left(\frac{-11}{6} + \frac{-5}{6} + \frac{+7}{6} \right) = \frac{-1}{2} \quad (0.2)$$

$$\vec{c} = (c_R, c_G, c_B) = \left(\frac{+1}{6}, \frac{+7}{6}, \frac{+19}{6} \right), \quad I_3(c) = \frac{1}{3} \left(\frac{+1}{6} + \frac{+7}{6} + \frac{+19}{6} \right) = \frac{+3}{2} \quad (0.3)$$

$$\vec{s} = (s_R, s_G, s_B) = \left(\frac{-17}{6}, \frac{-11}{6}, \frac{+1}{6} \right), \quad I_3(s) = \frac{1}{3} \left(\frac{-17}{6} + \frac{-11}{6} + \frac{+1}{6} \right) = \frac{-3}{2} \quad (0.4)$$

$$\vec{t} = (t_R, t_G, t_B) = \left(\frac{+7}{6}, \frac{+13}{6}, \frac{+25}{6} \right), \quad I_3(t) = \frac{1}{3} \left(\frac{+7}{6} + \frac{+13}{6} + \frac{+25}{6} \right) = \frac{+5}{2} \quad (0.5)$$

$$\vec{b} = (b_R, b_G, b_B) = \left(\frac{-23}{6}, \frac{-17}{6}, \frac{-5}{6} \right), \quad I_3(b) = \frac{1}{3} \left(\frac{-23}{6} + \frac{-17}{6} + \frac{-5}{6} \right) = \frac{-5}{2} \quad (0.6)$$

- 2) Many weak interaction phenomena can be explained by V_{CKM} , CKM matrix (0) [4] that based on experimental observation.

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 0.975 & 0.224 & 0.004 \\ 0.224 & 0.974 & 0.042 \\ 0.009 & 0.041 & 0.999 \end{pmatrix} \quad (0)$$

After that, CKM matrix *is parameterized* [5] to be written as a product of three rotation matrices, that called a smart Wolfenstein parametrization, one of its advantage is CP violation can be involved. (Ref [6],[7],...[12])

In this paper, CKM matrix *is colorized* by means of quark color q_R, q_G, q_B . And scalar products of colors q_R, q_G, q_B and isospin broken $I_3(\xi_{rw})_{CKM}$ are concerned about into Cabibbo-Kobayashi-Maskawa Matrix CKM.

Outline Flowchart for Isospin Violated In CKM Matrix

32

I. QUARKCOLOR SCALAR PRODUCTS IN CKM MATRIX

$$V_{CKM} = V^{CKM}(q_{RGB}) \Rightarrow V(\vec{r} \cdot \vec{w}) \quad (1)\star \Rightarrow V(\vec{r}' \cdot \vec{w}'_r) \quad (2)\star \Rightarrow V(\vec{r}' \cdot \vec{w}_r) \quad (3)\star$$

Here

$$【1】 \quad \vec{r} \cdot \vec{w} = r_R w_R + r_G w_G + r_B w_B \quad (1.0)$$

$$【2】 \quad \vec{r}' \cdot \vec{w}'_r = r'_R w'_{rR} + r'_G w'_{rG} + r'_B w'_{rB} \quad (2.0)$$

$$【3】 \quad \vec{r}' \cdot \vec{w}_r = r'_R w_{rR} + r'_G w_{rG} + r'_B w_{rB} \quad (3.0)$$

Symbols (1)★, (2)★, (3)★ respectively stand for the quarkcolor scalar products (1.0),(2.0),(3.0) of CKM Matrix in different interaction regions shown below

【1】Strong interaction color representation of flavor, when $I_3(q)$ is conserved

$$\vec{r} = \vec{r}(q) = (r_R, r_G, r_B) \quad (1.1)$$

$$\vec{w} = \vec{w}(q) = (w_R, w_G, w_B) \quad (1.2)$$

【2】Weak interaction color representation of flavor, when isospin $I_3(q)$ is conserved ($\xi = 0$).

$$\vec{r}' = \vec{r}(q) + \frac{1}{6} \vec{\Phi}_r \quad (2.1)$$

$$\vec{w}_r = \vec{w}(q) + \frac{1}{6} \vec{\Phi}_{rw} = (w_R, w_G, w_B) + \frac{1}{6} ((\Phi_{rw})_R, (\Phi_{rw})_G, (\Phi_{rw})_B) \quad (2.2)$$

【3】Weak interaction color representation of flavor, when isospin $I_3(q)$ is broken ($\xi \neq 0$)

$$\vec{r}' = \vec{r}(q) + \frac{1}{6} \vec{\Phi}_r \quad (3.1)$$

$$\vec{w}_r = \vec{w}_r(\xi) = \vec{w}(q) + \frac{1}{6} \vec{\Phi}_{rw}(\xi) \quad (3.2)$$

Where $r = u, c, t$ are *up-type quarks*, quark charge $Q_r = \frac{+2}{3} e$ and $w = d, s, b$ are *down-type quarks*, quark charge $Q_w = \frac{-1}{3} e$. It will be shown that in case 【3】 , the charge Q_w of *down-type quark* will be a slight deviated from $\frac{-1}{3}$ due to isospin broken $I_3(q)$. Superscript " ' ", that written on the top right of r and w , stands for quark being in weak interaction region.

Detail Processes for Isospin Violated In CKM Matrix

II. ISOSPIN I_3 BE CONSERVED IN CKM MATRIX

For clear logical route to quark-colorization of Cabibbo-Kobayashi-Maskawa Matrix CKM, in following an example (labelled by mark "♦") of color scalar product $\vec{u} \cdot \vec{d}_u$ is given, which (includes **2.1.** $\vec{u} \cdot \vec{d}^\blacklozenge$ and **2.2.** $\vec{u} \cdot \vec{d}_u^\blacklozenge$) arranged in the top left element V_{11} of CKM matrix.

2.1. In **【1】** Strong interaction color representation of flavor, (4) is color scalar product of *u quark* and *d quark*

$$\vec{u} \cdot \vec{d}^\blacklozenge = u_R d_R + u_G d_G + u_B d_B = \left(\frac{-5}{6} \right) \left(\frac{-11}{6} \right) + \left(\frac{+1}{6} \right) \left(\frac{-5}{6} \right) + \left(\frac{+13}{6} \right) \left(\frac{+7}{6} \right) = \frac{1}{36} \{ +55 - 5 + 91 \} = \frac{+141}{36} \blacklozenge \quad (4)$$

obtain isospin $I_3(q_{RGB})$

$$I_3(u) = \frac{1}{3} \left(\frac{-5}{6} + \frac{+1}{6} + \frac{+13}{6} \right) = \frac{+1}{2} \quad (0.1)$$

$$I_3(d) = \frac{1}{3} \left(\frac{-11}{6} + \frac{-5}{6} + \frac{+7}{6} \right) = \frac{-1}{2} \quad (0.2)$$

In this way, for CKM Matrix we get following

$$\text{Matrix (1)★} \quad V^{\text{CKM}}(q_{RGB}) = \begin{pmatrix} \vec{u} \cdot \vec{d}^\blacklozenge & \vec{u} \cdot \vec{s} & \vec{u} \cdot \vec{b} \\ \vec{c} \cdot \vec{d} & \vec{c} \cdot \vec{s} & \vec{c} \cdot \vec{b} \\ \vec{t} \cdot \vec{d} & \vec{t} \cdot \vec{s} & \vec{t} \cdot \vec{b} \end{pmatrix} = \frac{1}{36} \begin{pmatrix} +141\blacklozenge & +87 & +33 \\ +87 & -75 & -237 \\ +33 & -237 & -507 \end{pmatrix} \quad (5)$$

Matrix (5) always appears in strong interaction.

2.2. In 【2】 Weak interaction color representation of flavor, (10) is color scalar product of u' quark and d'_u quark

To research for the properties of quark color scalar product and quark isospin in Weak Interaction, so-called "weak interaction pairing" $\vec{\Phi}$ of CSDF is introduced and $\vec{\Phi}$ be attached to each of the six flavors $\vec{t}, \vec{c}, \vec{u}, \vec{d}, \vec{s}, \vec{b}$ of strong interaction.

(6),(7) are the concrete expressions of *weak interaction pairing*, for *up-type quark u* and *down-type quark d*, by which, \vec{u}' and \vec{d}'_u of express (2.1) and (2.2) are obtained.

$$\vec{\Phi}_u = \left(\frac{+1}{2}, \frac{+16}{2}, \frac{-17}{2} \right) \quad (6)$$

$$\vec{\Phi}_{ud} = \left(\frac{+5}{2}, \frac{+10}{2}, \frac{-15}{2} \right) \quad (7)$$

$$\vec{u}' = \vec{u} + \frac{1}{6} \vec{\Phi}_u = \left(\frac{-5}{6}, \frac{+1}{6}, \frac{+13}{6} \right) + \frac{1}{6} \left(\frac{+1}{2}, \frac{+16}{2}, \frac{-17}{2} \right) = \left(\frac{-9}{12}, \frac{+18}{12}, \frac{+9}{12} \right) \quad (8)$$

$$\vec{d}'_u = \vec{d} + \frac{1}{6} \vec{\Phi}_{ud} = \left(\frac{-11}{6}, \frac{-5}{6}, \frac{+7}{6} \right) + \frac{1}{6} \left(\frac{+5}{2}, \frac{+10}{2}, \frac{-15}{2} \right) = \left(\frac{-17}{12}, \frac{0}{12}, \frac{-1}{12} \right) \quad (9)$$

$$\vec{u}' \cdot \vec{d}'_u \blacklozenge = (\vec{u} + \frac{1}{6} \vec{\Phi}_u) \cdot (\vec{d} + \frac{1}{6} \vec{\Phi}_{ud}) = \left(\frac{-9}{12}, \frac{+18}{12}, \frac{+9}{12} \right) \cdot \left(\frac{-17}{12}, \frac{0}{12}, \frac{-1}{12} \right) = 1.000 \blacklozenge \quad (10)$$

Formulas (11) (12) show in case **【2】**, isospin I_3 is conserved too, as that I_3 (0.1) and (0.2) in strong interaction. (11) (12) are I_3 crucial piont states of weak interaction.

$$I_3(u') = \frac{1}{3} \left(\frac{-9}{12} + \frac{+18}{12} + \frac{+9}{12} \right) = \frac{+1}{2} \quad (11)$$

$$I_3(d'_u) = \frac{1}{3} \left(\frac{-17}{12} + \frac{0}{12} + \frac{-1}{12} \right) = \frac{-1}{2} \quad (12)$$

There are nine *weak interaction pairings* $\vec{\Phi}$ in Matrix (2)★ below. Similar to *pairing* $\vec{\Phi}$ (6)-(7), after deliberate calculations, at last the eight other weak interaction pairings $\vec{\Phi}$ are found out, and using them, further previous Matrix (1)★ and (5) of CKM Matrix of strong interaction could be reconstructed into Matrix (2)★ and (13) of weak interaction. we get following

$$\text{Matrix (2)★} \quad V^{\text{CKM}}(q_{\text{RGB}}, \Phi) = \begin{pmatrix} \downarrow & \downarrow & \downarrow \\ \vec{u}' \cdot \vec{d}'_u \blacklozenge & \vec{u}' \cdot \vec{s}'_u & \vec{u}' \cdot \vec{b}'_u \\ \vec{c}' \cdot \vec{d}'_c & \vec{c}' \cdot \vec{s}'_c & \vec{c}' \cdot \vec{b}'_c \\ \vec{t}' \cdot \vec{d}'_t & \vec{t}' \cdot \vec{s}'_t & \vec{t}' \cdot \vec{b}'_t \end{pmatrix} = \begin{pmatrix} 1.000 \blacklozenge & 0.000 & 0.000 \\ 0.000 & 1.000 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{pmatrix} \quad (13)$$

(13) is the representation of crucial piont state of CKM in weak interaction and (13) is unitary obviously.

III. ISOSPIN I_3 BE BROKEN IN CKM MATRIX

Taking broken parameter $\xi_{ud} = \xi = 0.2$ into (7) of *pairing*- $\vec{\Phi}$ (6)-(7) obtain (14) and (15)

$$\vec{\Phi}_{ud}(\xi) = \left(\frac{+5}{2}, \frac{+10-\xi}{2}, \frac{-15}{2} \right) = \left(\frac{+5}{2}, \frac{+10-0.2}{2}, \frac{-15}{2} \right) = \left(\frac{+5}{2}, \frac{+9.8}{2}, \frac{-15}{2} \right) \quad (14)$$

Abbreviation

$$\vec{d}_u \equiv \vec{d}'_u(\xi) = \vec{d} + \frac{1}{6} \vec{\Phi}_{ud}(\xi) = \left(\frac{-11}{6}, \frac{-5}{6}, \frac{+7}{6} \right) + \frac{1}{6} \left(\frac{+5}{2}, \frac{+9.8}{2}, \frac{-15}{2} \right) = \left(\frac{-17}{12}, \frac{-0.2}{12} \blacklozenge, \frac{-1}{12} \right) \quad (15)$$

When broken parameter ξ appears in $\vec{\Phi}$, we call $\vec{\Phi}$ be "Color-Broken" and call the colors of down-type quark \vec{d} (15), or quarkcolor scalar products (16) of CKM be "Color-Broken".

From \vec{d}_u , simultaneously & respectively obtain two physical quantities $\vec{u}' \cdot \vec{d}_u$ (16) and $I_3(\vec{d}_u)$ (18) below:

$$\vec{u}' \cdot \vec{d}_u \blacklozenge = \left(\frac{-9}{12}, \frac{+18}{12}, \frac{+9}{12} \right) \left(\frac{-17}{12}, \frac{-0.2}{12} \blacklozenge, \frac{-1}{12} \right) = \frac{1}{144} \{ +144 - 3.6 \} = \frac{1}{144} \{ +140.4 \} = 0.975 \blacklozenge \quad (16)$$

$$I_3(\vec{u}') = \frac{1}{3} \left(\frac{-9}{12} + \frac{+18}{12} + \frac{+9}{12} \right) = \frac{+1}{2} \quad (17)$$

$$I_3(\vec{d}_u) \blacklozenge = \frac{1}{3} \left(\frac{-18}{12} + \frac{-0.2}{12} \right) = \frac{-1}{3} \left(\frac{3}{2} + \frac{0.1}{6} \right) = \frac{-1}{2} \left(1 + \frac{0.1}{9} \right) = \frac{-1}{2} \left(1 + \frac{1}{90} \right) = \frac{-1}{2} (1.011) \blacklozenge \quad (18)$$

- Formula (18) shows in case **【3】** $\xi \neq 0$, isospin I_3 is not conserved in weak interaction, there is a deviation 0.011 from $I_3(d) = \frac{-1}{2}$ (0.2)

There are nine independent real parameters ξ_{rw} (19) in CKM matrix, in which the third components I_3 are broken (20)

$$\xi_{rw} = \begin{pmatrix} \xi_{ud} & \xi_{us} & \xi_{ub} \\ \xi_{cd} & \xi_{cs} & \xi_{cb} \\ \xi_{td} & \xi_{ts} & \xi_{tb} \end{pmatrix} = \begin{pmatrix} +0.200\spadesuit & -1.792 & -0.032 \\ -1.0753 & +0.1248 & -0.2016 \\ -0.03086 & -0.140571 & +0.003429 \end{pmatrix} \quad (19)$$

$$I_3(\xi_{rw})_{\text{CKM}} = \begin{pmatrix} I_3(\vec{d}_u)\spadesuit & I_3(\vec{s}_u) & I_3(\vec{b}_u) \\ I_3(\vec{d}_c) & I_3(\vec{s}_c) & I_3(\vec{b}_c) \\ I_3(\vec{d}_t) & I_3(\vec{s}_t) & I_3(\vec{b}_t) \end{pmatrix} = \begin{pmatrix} \frac{-1}{2} \cdot (d) & \frac{-3}{2} \cdot (s) & \frac{-5}{2} \cdot (b) \\ \frac{-1}{2} \cdot (1.011)\spadesuit & \frac{-3}{2} \cdot (0.9668) & \frac{-5}{2} \cdot (0.9996) \\ \frac{-1}{2} \cdot (0.9403) & \frac{-3}{2} \cdot (1.0023) & \frac{-5}{2} \cdot (0.9978) \\ \frac{-1}{2} \cdot (0.9983) & \frac{-3}{2} \cdot (0.9974) & \frac{-5}{2} \cdot (1.00038) \end{pmatrix} \quad (20)$$

(20) is an elegant expression of isospin I_3 broken in CKM Matrix math frame. Respectively compare the first, the second and the third column of $I_3(\xi_{rw})_{\text{CKM}}$ (20) with $I_3(d)(0.2)$, $I_3(s)(0.4)$ and $I_3(b)(0.6)$ of $I_3(q_{\text{RGB}})$ (0.0).

- Mindful of the deviated values of the third isospin components above: for diagonal terms $I_3(\vec{d}_u), I_3(\vec{s}_c), I_3(\vec{b}_t) > 1$ and for off-diagonal terms $I_3(\xi_{rw}) < 1$
- Formula (16) be filled in (21). After the fullness of the eight other elements in CKM Matrix, ultimately we complete the processes of CKM Matrix colorization below

$$\text{Matrix (3)★} \quad V^{\text{CKM}}(q_{\text{RGB}}, \Phi, \xi) = \begin{pmatrix} \downarrow & \downarrow & \downarrow \\ \vec{u}' \cdot \vec{d}_u\spadesuit & \vec{u}' \cdot \vec{s}_u & \vec{u}' \cdot \vec{b}_u \\ \vec{c}' \cdot \vec{d}_c & \vec{c}' \cdot \vec{s}_c & \vec{c}' \cdot \vec{b}_c \\ \vec{t}' \cdot \vec{d}_t & \vec{t}' \cdot \vec{s}_t & \vec{t}' \cdot \vec{b}_t \end{pmatrix} = \begin{pmatrix} \downarrow & \downarrow & \downarrow \\ 0.975\spadesuit & 0.224 & 0.004 \\ 0.224 & 0.974 & 0.042 \\ 0.009 & 0.041 & 0.999 \end{pmatrix} \quad (21)$$

IV. CONCLUSIONS

In interaction **【3】** region, isospin $I_3 = I_3(\xi_{rw})_{\text{CKM}}$, is not conserved, which lead to *charge-deviated of quarks* $Q_{\text{dsb}}^{\text{CKM}}(\xi_{rw})$ (Ref. (E))

$$Q_{\text{d}_u} = I_3(\text{d}_u) + \frac{+1}{6} = \frac{-1}{2} (1.011) + \frac{+1}{6} = \frac{-1}{3} (1.011)e$$

$$Q_{\text{d}_c} = I_3(\text{d}_c) + \frac{+1}{6} = \frac{-1}{2} (0.9403) + \frac{+1}{6} = \frac{-1}{3} (0.91045)e$$

$$Q_{\text{d}_t} = I_3(\text{d}_t) + \frac{+1}{6} = \frac{-1}{2} (0.9983) + \frac{+1}{6} = \frac{-1}{3} (0.99745)e$$

$$Q_{\text{s}_u} = I_3(\text{s}_u) + \frac{+7}{6} = \frac{-3}{2} (0.9668) + \frac{+7}{6} = \frac{-1}{3} (0.8506)e$$

$$Q_{\text{s}_c} = I_3(\text{s}_c) + \frac{+7}{6} = \frac{-3}{2} (1.0023) + \frac{+7}{6} = \frac{-1}{3} (1.01035)e$$

$$Q_{\text{s}_t} = I_3(\text{s}_t) + \frac{+7}{6} = \frac{-3}{2} (0.9974) + \frac{+7}{6} = \frac{-1}{3} (0.9883)e$$

$$Q_{\text{b}_u} = I_3(\text{b}_u) + \frac{+13}{6} = \frac{-5}{2} (0.9996) + \frac{+13}{6} = \frac{-1}{3} (0.997)e$$

$$Q_{\text{b}_c} = I_3(\text{b}_c) + \frac{+13}{6} = \frac{-5}{2} (0.9978) + \frac{+13}{6} = \frac{-1}{3} (0.9835)e$$

$$Q_{\text{b}_t} = I_3(\text{b}_t) + \frac{+13}{6} = \frac{-5}{2} (1.00038) + \frac{+13}{6} = \frac{-1}{3} (1.00285)e$$

OR

$$Q_{\text{dsb}}^{\text{CKM}}(\xi_{rw}) = \begin{pmatrix} Q_{d_u} & Q_{s_u} & Q_{b_u} \\ Q_{d_c} & Q_{s_c} & Q_{b_c} \\ Q_{d_t} & Q_{s_t} & Q_{b_t} \end{pmatrix} = \begin{pmatrix} \frac{-1}{3} \cdot (1.011)e & \frac{-1}{3} \cdot (0.8506)e & \frac{-1}{3} \cdot (0.997)e \\ \frac{-1}{3} \cdot (0.91045)e & \frac{-1}{3} \cdot (1.01035)e & \frac{-1}{3} \cdot (0.9835)e \\ \frac{-1}{3} \cdot (0.99745)e & \frac{-1}{3} \cdot (0.9883)e & \frac{-1}{3} \cdot (1.00285)e \end{pmatrix} \quad (22)$$

- Mindful of the deviated values in (22): diagonal terms $Q_{d_u}, Q_{s_c}, Q_{b_t} > 1$; off-diagonal terms $Q_{d_c}, Q_{d_t}, Q_{s_u}, Q_{s_t}, Q_{b_u}, Q_{b_c} < 1$ (22). In weak interaction, charges $Q_{\text{dsb}}^{\text{CKM}}(\xi_{rw})$ of *down-type quark* will be a slight deviated from $\frac{-1}{3}e$ (SM theoretical value), due to isospin broken $I_3(\xi_{rw})_{\text{CKM}}$ of CKM Matrix colorized.

EPILOGUE

- The charge Q_q of all known six quarks can be expressed by the sum (E) of isospin I_3 (0.0) and quark color q_{RGB} (00.1) below

$$Q_q = I_3(q) + q_{\text{RGB}} \quad (\text{E})$$

$$q_{\text{RGB}} = (\frac{1}{6} + n), \quad n = 0, \pm 1, \pm 2, \dots \quad (\text{E1})$$

For *up-type quark*, $n = 0, -1, -2, \dots$ (E2)

$$Q_t = I_3(t) + \frac{-11}{6} = \frac{+5}{2} + \frac{-11}{6} = \frac{+15}{6} + \frac{-11}{6} = \frac{+4}{6} = \frac{+2}{3} e \quad (\text{E.5})$$

$$Q_c = I_3(c) + \frac{-5}{6} = \frac{+3}{2} + \frac{-5}{6} = \frac{+9}{6} + \frac{-5}{6} = \frac{+4}{6} = \frac{+2}{3} e \quad (\text{E.3})$$

$$Q_u = I_3(u) + \frac{+1}{6} = \frac{+1}{2} + \frac{+1}{6} = \frac{+3}{6} + \frac{+1}{6} = \frac{+4}{6} = \frac{+2}{3} e \quad (\text{E.1})$$

For *down-type quark*, $n = 0, +1, +2, \dots$ (E3)

$$Q_d = I_3(d) + \frac{+1}{6} = \frac{-1}{2} + \frac{+1}{6} = \frac{-3}{6} + \frac{+1}{6} = \frac{-2}{6} = \frac{-1}{3} e \quad (\text{E.2})$$

$$Q_s = I_3(s) + \frac{+7}{6} = \frac{-3}{2} + \frac{+7}{6} = \frac{-9}{6} + \frac{+7}{6} = \frac{-2}{6} = \frac{-1}{3} e \quad (\text{E.4})$$

$$Q_b = I_3(b) + \frac{+13}{6} = \frac{-5}{2} + \frac{+13}{6} = \frac{-15}{6} + \frac{+13}{6} = \frac{-2}{6} = \frac{-1}{3} e \quad (\text{E.6})$$

Comparing (E) with Gell-Mann-Nishijima relation (E4) [13],[14], then obtain (E5) below

$$Q = I_3 + Y/2 \quad (E4)$$

$$Y = 2q_{\text{RGB}} \quad (E5)$$

Where, hypercharge $Y = B + S$. B baryon number and S strange number of quark q . We see Gell-Mann-Nishijima relation (E4) is a special situation of (E), The latter (E), *math-mysterious*, is the extension of the former (E4), *empirical*.

- The algebra symmetry of q_{RGB} of color representation of flavor *Table 1* [3] could permute many possible arrangements. Further a series of magic figures, those are multiples of $1/3$, are constructed, that may illuminate the hypothesis about possible existence of higher-charges of quark q .

Two examples of quark charge formula (E) with $q_{\text{RGB}} = \frac{+1}{6}$, and with the fourth general quark are given below

For $I_3 = \frac{+1}{2}, \frac{-1}{2}$

$$I_3 + \frac{+1}{6} = \frac{+1}{2} + \frac{+1}{6} = \frac{+3}{6} + \frac{+1}{6} = \frac{+4}{6} = \frac{+2}{3} e$$

$$I_3 + \frac{+1}{6} = \frac{-1}{2} + \frac{+1}{6} = \frac{-3}{6} + \frac{+1}{6} = \frac{-2}{6} = \frac{-1}{3} e$$

For $I_3 = \frac{+3}{2}, \frac{-3}{2}$

$$I_3 + \frac{+1}{6} = \frac{+3}{2} + \frac{+1}{6} = \frac{+9}{6} + \frac{+1}{6} = \frac{+10}{6} = \frac{+5}{3} e$$

$$I_3 + \frac{+1}{6} = \frac{-3}{2} + \frac{+1}{6} = \frac{-9}{6} + \frac{+1}{6} = \frac{-8}{6} = \frac{-4}{3} e$$

For $I_3 = \frac{+5}{2}, \frac{-5}{2}$

$$I_3 + \frac{+1}{6} = \frac{+5}{2} + \frac{+1}{6} = \frac{+15}{6} + \frac{+1}{6} = \frac{+16}{6} = \frac{+8}{3} e$$

$$I_3 + \frac{+1}{6} = \frac{-5}{2} + \frac{+1}{6} = \frac{-15}{6} + \frac{+1}{6} = \frac{-14}{6} = \frac{-7}{3} e$$

For $I_3 = \frac{+7}{2}, \frac{-7}{2}$

$$I_3 + \frac{+1}{6} = \frac{+7}{2} + \frac{+1}{6} = \frac{+21}{6} + \frac{+1}{6} = \frac{+22}{6} = \frac{+11}{3} e$$

$$I_3 + \frac{+1}{6} = \frac{-7}{2} + \frac{+1}{6} = \frac{-21}{6} + \frac{+1}{6} = \frac{-20}{6} = \frac{-10}{3} e$$

Charges of the fourth general quark $I_3 = \frac{+7}{2}, \frac{-7}{2}$

I_3		$\frac{+7}{2}$	$\frac{-7}{2}$	$\frac{+7}{2}$	$\frac{-7}{2}$	$\frac{+7}{2}$	$\frac{-7}{2}$	$\frac{+7}{2}$	$\frac{-7}{2}$	$\frac{+7}{2}$	$\frac{-7}{2}$	$\frac{+7}{2}$	$\frac{-7}{2}$	$\frac{+7}{2}$	$\frac{-7}{2}$
q_{RGB}		$\frac{+19}{6}$	$\frac{+19}{6}$	$\frac{+13}{6}$	$\frac{+13}{6}$	$\frac{+7}{6}$	$\frac{+7}{6}$	$\frac{+1}{6}$	$\frac{+1}{6}$	$\frac{-5}{6}$	$\frac{-5}{6}$	$\frac{-11}{6}$	$\frac{-11}{6}$	$\frac{-17}{6}$	$\frac{-17}{6}$
Q		$\frac{+20}{3} e$	$\frac{-1}{3} e$	$\frac{+17}{3} e$	$\frac{-4}{3} e$	$\frac{+14}{3} e$	$\frac{-7}{3} e$	$\frac{+11}{3} e$	$\frac{-10}{3} e$	$\frac{+8}{3} e$	$\frac{-13}{3} e$	$\frac{+5}{3} e$	$\frac{-16}{3} e$	$\frac{+2}{3} e$	$\frac{-19}{3} e$

REFERENCES RÉFÉRENCES REFERENCIAS

[1] Shao-Xu Ren. Flavour and Colour of Quarks in Spin Topological Space. *Journal of Modern Physics* 2021,12, 380-389. Online ISSN: 2153-120X & Print ISSN: 2153-1196

[2] Shao-Xu Ren. (2012) The Third Kind of Particle. ISBN: 978-988-15598-9-0; (2014) The Origins Of Spins Of Elementary Particles. ISBN: 978-988-13649-7-5; (2016) Interaction of the Origins of Spin Angular Momentum. ISBN: 978-988-14902-0-9

[3] Shao-Xu Ren. Colored Quark and Colored Gluon in Standard Model, Hadronic Constituents. *GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A PHYSICS AND SPACE SCIENCE* Volume 23 ISSUE 2 Version 1.0 Year 2023 11-71. Online ISSN: 2249-4626 & Print ISSN: 0975-5896

[4] Kobayashi, M and T. Maskawa, CP violation in the renormalizable theory of weak interaction, *Prog. Thror. Phys.* **49** (1973) 652

[5] L.Wolfenstein, Parametrization of the Kabayashi-Maskawa matrix, *phys. rev. lett.* **51** (1983) 1945

[6] Antonio Ereditato. (2017). Ever Smaller. ISBN: 978-0-262-04386-1

[7] Andrzel J. Buras. (2020). Gauge Theory Of Weak Decays The Standard Model and The Expedition to New Phycics Summits. ISBN: 978-1-107-03403-7.

[8] Dong-Sheng Du, Mao-Zhi Yang. (2023). Introduction to Particle Physics. ISBN: 978-981-125-945-6.

[9] Ikaros I Bigi, Giulia Ricciardi, Marco Pallavicini. (2021). New Era for CP Asymmetries Axions and Rare Decays of Hadrons and Leptons. ISBN: 978-981-3233-07-2.

[10] Paul Langacker. (2017). The Standard Model and Beyond Second Edition ISBN: 978-7-5192-9614-8.

[11] Ian J.R. Aitchison, Anthony J.G. Hey. (2013). Gauge Theories in Particle Physics A Practical Introduction 4th Edition Volume2. ISBN: 978-7-5192-8371-1.

[12] Herwig Schopper Editor. (2020). Particle Physics Reference Library Volume1: Theory and Experiments. ISBN: 978-3-030-38209-4.

[13] Sakata S. *Prog. Theor.* , **76** (1949) 1739

[14] Gell-Mann. *Caltech Report CTS-20*, (1961); *Phys. Rev. Lett.* , **125** (1962) 1067; Ne'eman Y. *Nucl. Phys.* **26** (1961) 222