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Abstract8

In recent years, the impact of toxic phytoplankton on ecological balance has attracted more9

and more ecologists to study. In this paper, we develop and analyze a model with three10

interacting species, poisonous and nontoxic phytoplankton, and zooplankton, including11

zooplankton avoiding toxic phytoplankton in the presence of nontoxic phytoplankton, and the12

impact of human harvest on the coexistence of these three species. We first introduce the13

poisonous avoidance coefficient ?? and the human harvest of nontoxicphytoplankton and14

zooplankton to investigate its impact on species coexistence. We not only find that ?? has a15

particular effect on the coexistence of these three species. But also that human harvest is an16

essential factor determining the coexistence of these three species. Secondly, pregnancy delay17

() and toxin onset delay ( ) are introduced to explore the influence of time delay on the18

behavior of dynamic systems. When the delay value exceeds its critical value, the system will19

lose stability and go through Hopf bifurcation. After that, we use the principle of Pontryagin’s20

maximum to study the optimal tax policy without delay. We obtained the optimal path of the21

optimal tax policy. Finally, we carry out numerical simulations to verify the theoretical results.22

23

Index terms— toxic phytoplankton; human harvest; time delay; optimal tax policy; hopf bifurcation24

1 I. Introduction25

Marine phytoplankton and zooplankton are essential components of marine ecosystems and support the regular26
operation of the entire marine ecosystem. The research of marine phytoplankton and animal ecology is conducive27
to our comprehensive understanding of the status of an aquatic ecosystem. Marine plankton refers to the aquatic28
organisms suspended in the water and moving with water flow, mainly including phytoplankton and zooplankton,29
as well as other organisms such as planktonic viruses, planktonic bacteria ,and archaea. Phytoplankton is the30
primary producer in the sea; it converts solar energy into organic energy through photosynthesis, initiates the31
material circulation and energy flow in the sea, and is the most basic link in the marine food chain. Zooplankton32
is an essential consumer in the sea; this part of organic matter is utilized through the food chain and further33
transferred to the upper trophic level through secondary production processes. Therefore, phytoplankton and34
zooplankton provide food and energy sources for the upper trophic level organisms through the above primary35
and secondary production processes, supporting the regular operation of the entire marine ecosystem.36

Phytoplankton is not only the bottom but also the most crucial component of the marine ecosystem. It is37
divided into toxic and non-toxic phytoplankton. At the same time, zooplankton can distinguish different types38
of phytoplankton. To avoid feeding on toxic phytoplankton, which has a similar synergistic behavior mechanisms39
of selective grazing include prey morphology (size, color, shape, and colony formation), intestinal genetic strains,40
and poisonous chemicals released by prey [6][7][8] ??9][10][11][12]. Thus, the avoidance effect of zooplankton on41
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1 I. INTRODUCTION

toxins from toxic phytoplankton and the harmful effects of toxic compounds released by toxic species on their42
competitors have been studied [13][14][15][16][17][18][19][20].43

In this paper, we consider not only the effect of toxin avoidance on species existence, but also the impact of44
human beings on the harvest of non-toxic phytoplankton and zooplankton is considered, whereas non-toxic phyto-45
plankton on species existence and the human harvest has been applied in many models [21][22][23][24][25][26][27].46
Since time delay is widely studied in the phytoplankton-zooplankton model [28][29][30][31], another essential47
purpose of our research is to explore the effect of pregnancy delay and toxin onset delay on the dynamic system.48
Finally, we find that optimal strategies are applied in many models to constrain overfishing [32][33]. Through the49
research we know that in fisheries, there is a fishing strategy called specific fishing, that is, fishermen catch almost50
only one particular type of fish or several species associated with it, such as these three species in our article, so51
we need a feedback mechanism to control this particular capture. Based on the dual phytoplankton-zooplankton52
system, we consider the optimal tax policy to constrain this particular fishing.53

The organizational structure of this paper is as follows. In Section 2, we establish a mathematical model54
with double time delays for avoiding toxic species by zooplankton in the presence of non-toxic species. And give55
a parameter explanation in Table 2. In Section 3, we analyze the boundedness and stability of the boundary56
equilibrium point and the internal equilibrium point in the delay-free model. And obtain the bistability between57
the equilibrium points. The results are summarized in Table ?? and Fig 1 . In Section 4, by analyzing different58
situations of this double delay model, we obtain the critical value of time delay when the system undergoes Hopf59
bifurcation. In Section 5, we study the optimal tax policy without time delay using the principle of Pontryagin’s60
maximum. In addition, we use the parameters and initial values given in Table 2 and (6.1) to simulate several61
cases of double-delay systems in Matlab to verify all theoretical results in Section 6. Lastly, we end this paper62
with some conclusions and significance in Section 7.63

Considering the toxin refuge of zooplankton, a nontoxic phytoplankton-toxic zooplankton model was proposed64
in [14]. They showed that avoidance effects can promote the coexistence of non-toxic phytoplankton, toxic65
phytoplankton and zooplankton. Which can be shown as(with symbols slightly varied):? ? ? ? ? ? ? ? ? ? ? ?66
? ? ? ? ? ? ? ? ? ? ? dN dt = r 1 N (1 - N + ? 1 T k 1 ) - w 1 N Z p 1 + N , dT dt = r 2 T (1 - T + ? 2 N k67
2 ) - w 2 T Z p 2 + T + ?N , dZ dt = w 1 N Z p 1 + N - w 2 T Z p 2 + T + ?N -dZ, N (0) ? 0, T (0) ? 0, Z(0)68
? 0,(2.1)69

where N , T ,and Z represent the biomass of nontoxic phytoplankton, toxic phytoplankton ,and zooplankton,70
respectively. k 1 and k 2 are the environmental carrying capacities of nontoxic phytoplankton (NTP) and71
toxinproducing phytoplankton (TPP) species, respectively. r 1 and r 2 represent the constant intrinsic growth72
rates of N and T , respectively. ? 1 and ? 2 measure the competitive effect of T on N , and N on T , respectively.73
w 1 and w 2 represent the rates at which N and T are consumed by Z, respectively. p 1 and p 2 are half-saturation74
constants for NTP and TPP, respectively. ? represents the intensity of avoidance of T by Z in the presence of N75
, and d is the natural mortality of zooplankton. As the research merely focuses on a single time model, moreover76
overfishing has an important impact on the stability of marine ecosystems, human harvest and time delays should77
be taken into account. The increment in zooplankton population due to predation does not appear immediately78
after consuming phytoplankton; it takes some time(say ? 1 ), which can be regarded as the gestation period79
in zooplankton. The decrease of zooplankton population caused by ingestion of toxic phytoplankton does not80
occur immediately. Still, it requires a certain time(say ? 2 ), which can be regarded as the reaction time after81
zooplankton poisoning. Accordingly the bio-economic model with time delays on the interactions of nontoxic82
phytoplankton, toxic plankton and zooplankton with toxin avoidance effects, which can be shown as follows:? ?83
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? dN dt = r 1 N (1 - N + ? 1 T k 1 ) - w 1 N Z p 1 + N -q 1 EN, dT84
dt = r 2 T (1 - T + ? 2 N k 2 ) - w 2 T Z p 2 + T + ?N , dZ dt = c 1 w 1 N (t -? 1 )Z(t -? 1 ) p 1 + N (t -? 1 )85
- c 2 w 2 T (t -? 2 )Z(t -? 2 ) p 2 + T (t -? 2 ) + ?N (t -? 2 ) -dZ -q 2 EZ, N (0) ? 0, T (0) ? 0, Z(0) ? 0,(2.2)86

where N , T , and Z represent the biomass of nontoxic phytoplankton, toxic phytoplankton and zooplankton,87
respectively. ? 1 (? 1 > 0) and ? 2 (? 2 > 0) represent the maturation gestation delay and the toxin onset88
delay, respectively. c 1 and c 2 represent the conversion rate of N to Z and T to Z, respectively. Due to the89
experience of human capture, we assume that humans can distinguish between toxic phytoplankton and non-toxic90
phytoplankton when capturing zooplankton and phytoplankton. So, we put q 1 and q 2 to represent the fishing91
coefficients of nontoxic phytoplankton and zooplankton, respectively. And E is the effort used to harvest the92
population. To investigate the effect of time delay on the dynamic behavior of the model, we will first study the93
stability of the equilibrium point of the following model without time delay.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?94
? ? ? ? ? dN dt = r 1 N (1 - N + ? 1 T k 1 ) - w 1 N Z p 1 + N -q 1 EN, dT dt = r 2 T (1 - T + ? 2 N k 2 ) -95
w 2 T Z p 2 + T + ?N , dZ dt = c 1 w 1 N Z p 1 + N - c 2 w 2 T Z p 2 + T + ?N -dZ -q 2 EZ, N (0) ? 0, T96
(0) ? 0, Z(0) ? 0.(2.3)97

In this subsection, firstly, we shall show the positivity and boundedness of solutions of the system (2.3), which98
is vital for the biological understanding of the system and the subsequent analysis.99

All the solutions with initial values of system (2.3), which start in R 3 + , are always positive and bounded.100
Proof. Firstly, we rewrite the model (2.3) and take the linear as the following form:dX dt = F (X),(3.1)101
where X(t) = (N, T, Z) T ? R 3 + and F (X) is simplified as the following F (X) = ? ? F 1 (X) F 2 (X) F 3102

(X) ? ? = ? ? ? ? ? ? ? r 1 N (1 -N +?1T k1 ) -w1N Z p1+N -q 1 EN r 2 T (1 -T +?2N k2 ) -w2T Z p2+T103
+?N c1w1N Z p1+N -c2w2T Z p2+T +?N -dZ -q 2 EZ ? ? ? ? ? ? ? .104
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2 Notes105

We want to prove that (N (t), T (t), Z(t)) ? R 3 + for all t ? [0, +?). For system (2.3) with initial value N (0)106
> 0, T (0) > 0 and Z(0) > 0, we haveN (t) = N (0) exp{ t 0 [r 1 (1 -N (s)+?1T (s) k1 ) -w1Z(s) p1+N (s) -q 1107
E]ds}, T (t) = T (0) exp{ t 0 [r 2 (1 -T (s)+?1N (s) k2 ) - w2Z(s) p2+T (s)+?N (s) ]ds}, Z(t) = Z(0) exp{ t 0 [108
c1w1N (s) p1+N (s) - c2w2T (s) p2+T (s)+?N (s) -d -q 2 E]ds},109

which shows that all the solutions of system (2.3) are always positive for all t > 0.110
Secondly, we prove the boundedness of the solution. Let (N (t), T (t), Z(t)) be the solutions of system (2.3),111

we define a functionW (t) = c 1 N (t) + c 2 T (t) + Z(t). (3.2)112
Then, by differentiating (3.2) concerning t, we obtaindW dt + ?W = c 1 r 1 N (1 - N + ? 1 T k 1 ) + c 2 r 2113

T (1 - T + ? 1 N k 2 ) - 2c 2 w 2 T Z p 2 + T + ?N -dZ -q 2 EZ -c 1 q 1 EN + c 1 ?N + c 2 ?T + ?Z, ? c 1 r 1114
N (1 - N k 1 ) + c 2 r 2 T (1 - T k 2 ) -dZ + c 1 ?N + c 2 ?T + ?Z, = - c 1 r 1 N 2 k 1 + (r 1 + ?)c 1 N - c 2115
r 2 T 2 k 2 + (r 2 + ?)c 2 T + (? -d)Z, ? c 1 k 1 (r 1 + ?) 2 4r 1 + c 2 k 2 (r 2 + ?) 2 4r 2 + (? -d)Z, ? c 1116
r 2 k 1 (r 1 + ?) 2 + c 2 r 1 k 2 (r 2 + ?) 2 4r 1 r 2 + (? -d)Z, when ? -d < 0, we can obtain dW dt + ?W ?117
c1r2k1(r1+?) 2 +c2r1k2(r2+?) 2 4r1r2 , noting ? = c1r2k1(r1+?) 2 +c2r1k2(r2+?) 2 4r1r2118

, therefore, applying a theorem on differential inequalities [34], we obtain0 ? W ? ? ? + W (N (0),T (0),Z(0))119
e ?t120

, let t ? +?, W (N, T, Z) ? ? ? . So, all solutions of system (2.3) enter the regionD = {(N, T, Z) ? R 3 + : 0121
? W (N, T, Z) ? ? ? }.(3.3)122

This shows that every solution of the system is bounded. System (2.3) possesses six different equilibrium123
points:124

(i) the plankton-free equilibrium, E 0 = (0, 0, 0), which always exists;125
(ii) TPP and zooplankton-free equilibrium, E 1 = (k 1 , 0, 0), which is always feasible;126
(iii) NTP and zooplankton-free equilibrium, E 2 = (0, k 2 , 0), which is always feasible;127
(iv) zooplankton-free equilibrium, E 3 = ( N , T , 0), whereN = ? 1 k 2 -k 1 ? 1 ? 2 -1 - q 1 k 1 E r 1 , T = ?128

2 k 1 -k 2 ? 1 ? 2 -1 ;129
(v)TPP-free equilibrium E 4 = ( N , 0, Z), whereN = (q 2 E + d)p 1 c 1 w 1 -d -q 2 E , Z = r 1 (k 1 -N ) -q130

1 k 1 E(p 1 + E) k 1 w 1 ;131
(vi)the interior equilibrium, E * = (N * , T * , Z * ), whereT * = c 1 w 1 N * -(d + q 2 E)(p 1 + N * )(p 2132

+ ?N * ) (c 2 w 2 + d + q 2 E)(p 1 + N * ) -c 1 w 1 N * , Z * = (p 1 + N * )r 1 (k 1 -N * -? 1 T * ) -q 1 k 1 E133
k 1 w 1 ;134

and N * can be obtained fromr 2 (p 2 + T * + ?N * )(k 2 -T * -? 2 N * ) -w 2 k 2 Z * = 0. (3.4)135
Next, we illustrate the existence and stability of six equilibria when human harvest and avoidance factor exist136

simultaneously by solving Jacobi determinant of different equilibria, and summarize them in Table ??.137
Equilibria analysis: Obviously, the equilibria E 0 , E 1 and E 2 always exist. The zooplankton-free equilibrium138

E 3 exists, let N and T both be positive, that is ? 2 > k2 k1 and ? 1 > (?1?2-1)q1k1E r1k1 + k1 k2 . The TPP-139
free equilibrium E 4 exists, let N and Z both be positive, that is w 1 > d+q2E c1 and k 1 > r1N r1-q1E(p1+E)140
. The interior equilibrium point E * exists; let N * , T * and Z * all be positive, that isk 1 > q1k1E r1 + N * +141
? 1 T * , c 2 w 2 (p 1 + N * ) > c 1 w 1 N * -(d + q 2 E)(p 1 + N * )142

> 0 and Eq.(3.4) has at least one positive root.143
In the following, we summarize the eigenvalues and local stability conditions around the feasible equilibrium144

point of each organism of system (2.3).145
(i) The eigenvalues of the plankton-free equilibrium E 0 = (0, 0, 0) are r 1 , r 2 and -d -q 2 E. Therefore, it is146

a saddle point and hence always unstable.147
(ii) The eigenvalues of the TPP and zooplankton-free equilibriumE 1 = (k 1 , 0, 0) are -r 1 -q 1 E, r 2 (1 -k1?2148

k2 ) and c1w1k1 p1+k1 -d -q 2 E. When c 1 ? 1 -d -q 2 E149
? 0, and ? 2 > k2 k1 hold, E 1 is LAS(locally asymptotically stable). On the contrary, if c 1 ? 1 -d -q 2 E >150

0, ? 2 > k2 k1 and k 1 < p1(d+q2E) c1w1-d-q2E hold, we can also obtain E 1 is LAS. (iii) The eigenvalues of151
the NTP and zooplankton-free equilibriumE 2 = (0, k 2 , 0) are r 2 (1 -k2?1 k1 ) -q 1 E, -r 2 and -c2w2k2 p2+k2152
-d -q 2 E, Therefore, E 2 is LAS if k 1 < r2?1k2 r2-q1E .153

(iv) The eigenvalues of the zooplankton-free equilibriumE 3 = ( N , T , 0) are c1w1 N p1+ N -c2w2 T p2+ T154
+? N -d -q 2 E155

, ? 1 and ? 2 , where ? 1 and ? 2 are the roots of the equation? 2 + b1 ? + c1 = 0,(1)156
b) Equilibrium points and their stability157
Noteswhere b1 = -[r 2 -r 1 + r 1 k 2 (2 N + ? 1 T ) -r 2 k 1 (2 T + ? 2 N ) k 1 k 2 ], c1 = r 1 r 2 [1 -(2 T +158

? 2 N )(2 N + ? 1 T )][ 1 (2 N + ? 1 T )k 2 + 1 (2 T + ? 2 N )k 1 - 1 k 1 k 2 ] + q 1 r 2 E( k 1 (2 T + ? 2 N )159
-r 1 ? 1 2 N T k 1 k 2 -1). Therefore, let c1w1 N p1+ N -c2w2 T p2+ T +? N -d -q 2 E < 0, ? 1 and ? 2 with160
negative real parts, that is c1w1 N p1+ N -d -q 2 E < c2w2 T p2+ T +?161

N , b1 > 0 and c1 > 0. If the above conditions are satisfied, E 3 is LAS.162
(v) The eigenvalues of the TPP-free equilibriumE 4 = ( N , 0, Z) are r 2 (1 -?2 N k2 ) -w2 Z p2+?163
N , ?1 and ?2 , where ?1 and ?2 are the roots of the equation? 2 -(ã 2 + b2 )? + ã2 b2 + c2 = 0,(2)164
whereã2 = (r 1 (1 -2 N k1 ) -w1p1 Z (p1+ N ) 2 -q 1 E), b2 = ( c1w1 N p1+ N -d -q 2 E), c2 = c1w1 2 p1 N165

Z (p1+ N ) 3 . Therefore, let r 2 (1 -?2 N k2 ) -w2 Z p2+?166
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3 REF

N < 0, ?1 and ?2 with negative real parts, that is (ã 2 + b2 ) < 0 and ã2 b2 + c2 > 0. If the above conditions167
are satisfied, E 4 is LAS.168

(vi)By solving the Jacobi determinant of E * , we can get its characteristic equation as follows? 3 + D 1 ? 2169
+ D 2 ? + D 3 = 0.(3)170

The interior equilibriumE * = (N * , T * , Z * ) is LAS if (a) D 1 > 0, (b) D 3 > 0, (c) D 1 D 2 -D 3 > 0,171
whereD 1 = -{r 2 [1 - (2T * + ? 2 N * ) k 1 ] - w 2 Z * (p 2 + ?N * ) (p 2 + T * + ?N * ) 2 + r 1 [1 - (2N *172

+ ? 1 T * ) k 1 ] - w 2 p 1 Z * (p 1 + N * ) 2 -q 1 E} -( c 1 w 1 N * p 1 + N * - + r 1 ? 1 N * k 1 ( r 1 ? 1 T *173
k 2 + w 2 ?T * Z * ) (p 2 + T * + ?N * ) 2 ) + {r 2 [1 - (2T * + ? 2 N * ) k 1 ] - w 2 Z * (p 2 + ?N * ) (p 2 +174
T * + ?N * ) 2 + r 1 [1 - (2N * + ? 1 T * ) k 1 ] - w 2 p 1 Z * (p 1 + N * ) 2 -q 1 E} × { c 1 w 1 N * p 1 + N175
* - c 2 w 2 T * p 2 + T * + ?N * -d -q 2 E}, D 3 =-{ c 1 w 1 p 1 Z * (p 1 + N * ) 2 - c 2 w 2 ?T * Z * (p 2 +176
T * + ?N * ) 2 } × {- r 1 ? 1 w 2 T * k 1 (p 2 + T * + ?N * ) + w 1 N * p 1 + N * × (r 2 (1 - (2T * + ? 2 N177
* ) k 2 ) - w 2 Z * (p 2 + ?N * ) (p 2 + T * + ?N * ) 2 )-( c 2 w 2 Z * (p 2 + ?N * ) (p 2 + T * + ?N * ) 2 )×(178
w 2 T * p 2 + T * + ?N * )×[-r 1 (1- (2N * + ? 1 T * ) k 1 )+ w 1 p 1 Z * (p 1 + N * ) 2 +q 1 E]} + w 1 N *179
p 1 + N * ×( r 1 ? 1 T * k 2 + w 2 ?T * Z * (p 2 + T * + ?N * ) 2 )-( c 2 w 2 Z * (p 2 + ?N * ) (p 2 + T * +180
?N * ) 2 )× {- r 1 w 2 T * p 2 + T * + ?N * + r 1 w 2 (2N * + ? 1 T * )T * k 1 (p 2 + T * + ?N * ) + w 1 w181
2 p 1 T * Z * (p 2 + T * + ?N * )(p 1 + N * ) 2 + w 2 q 1 ET * p 2 + T * + ?N * + r 1 ? 1 w 1 N * T * k 2182
(p 1 + N * ) + w 1 w 2 ?N * T * Z * (p 2 + T * + ?N * ) 2 (p 1 + N * ) } + {r 1 (1 - (2N * + ? 1 T * ) k 1 ) -183
w 2 p 1 Z * (p 1 + N * ) 2 -q 1 E} × {r 2 (1 - (2T * + ? 2 N * ) k 1 ) - w 2 Z * (p 2 + ?N * ) (p 2 + T * + ?N184
* ) 2 } + r 1 ? 1 N * k 1 × ( r 1 ? 1 T * k 2 + w 2 ?T * Z * (p 2 + T * + ?N * ) 2 ).185

From the calculation of the eigenvalues, obviously, ? does not affect the stability of E 1 and E 2 . Still, it has186
a significant impact on the stability of E 3 and E 4 (because the eigenvalues of E 1 and E 2 are independent of ?,187
but related to human harvest). On the other hand, we not only find that the equilibrium point of system (2.3)188
is affected by human harvest, but also has a particular impact on its stability(it can be seen from the eigenvalue189
of each equilibrium point).190

Next, the biological explanations of the above different equilibria are discussed below. Since all these191
interpretations are mainly based on local asymptotic stability conditions, initial abundance of all the populations192
may also play an essential role for the system’s dynamics together with the parameters. Different from the193
biological explanation in [14], we not only consider the effect of ? on species coexistence, but also human harvest194
as an essential factor in species coexistence.195

(i)E 0 : Extinction of all the populations at a time is impossible.196
(ii)E 1 : From the analysis of research results, whenever the carrying capacity of the NTP population (k 1 )197

stays within the specific threshold values of k2 ?2 < k 1 < p1(d+q2E) c1w1-d-q2E , both TPP and zooplankton198
will eventually become extinct from the system. Now, through the analysis of the k 1 threshold range, as the199
intensification of the harvest for zooplankton, the equilibrium point E 1 remains stable for a more extensive200
range of k 1 , and we can say that over-fishing of zooplankton (q 2 E) may accelerate the extinction of TPP and201
zooplankton. + {r 1 [1 - (2N * + ? 1 T * ) k 1 ] - w 2 p 1 Z * (p 1 + N * ) 2 -q 1 E} × {r 2 [1 - (2T * + ? 2 N202
* ) k 1 ] - w 2 Z * (p 2 + ?N * ) (p 2 + T * + ?N * ) 2 } (iii)E 2 :203

If the carrying capacity of NTP population (k 1 ) stays below the threshold value r2?1k2 r2-q1E , both NTP204
and zooplankton eventually extinct. With the competitive effect of TPP on NTP (? 1 ), the environmental205
carrying capacities of toxin-producing phytoplankton (k 2 ) and harvesting term for NTP and zooplankton [14]206
S. Chakraborty, S. Bhattacharya, U. Feudel, J. Chattopadhyay, The role of avoidance by zooplankton for survival207
and dominance of toxic phytoplankton, Ecol. Complexity 11 (2012) 144-153.208
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(q 1 E) increase, respectively. The equilibrium point E 2 remains stable for a larger scale of k 1 ; we can say that210
the possibility of deracinating NTP and zooplankton at a time increases with the increase in ? 1 , k 2 and q 1 E.211

(iv)E 3 : When the carrying capacity of NTP population (k 1 ) remains within two threshold values r2?1k2212
r2-q1E < k 1 < k2 ?2 (it can be obtained by the threshold value (k 1 ) of E 1 and E 2 ) together with the213
competitive effects (? 1 , ? 2 ), the harvesting term on NTP (q 1 E) are present and the values of all three are214
small, the zooplankton population will go extinct on the condition that c1w1 N p1+ N -d -q 2 E < c2w2 T p2+215
T +? N , whereas both NTP and TPP persist in the system. The chance of zooplankton extinction increases216
with the decrease in avoidance of TPP by zooplankton (?), TPP consumption rate (w 1 ), the half-saturation217
constant for TPP (p 2 ), the harvesting term on zooplankton (q 2 E) and the zooplankton mortality(d). For a218
specific parameter setup ( c1w1 N p1+ N -(d + q 2 E) > 0), we can find a threshold value of the avoidance of219
TPP by zooplankton (? <(c2w2 T )(p1+ N ) ( N )(c1w1 N -(d+q2E)(p1+ N )) -p2+ T N )220

, below which the zooplankton population will become extinct. On the contrary, for c1w1 N p1+ N -(d + q221
2 E) < 0, the extinction of zooplankton dose not depend on the intensity of avoidance; it maybe has something222
relationship with the harvest term on zooplankton (q 2 E).223

(v)E 4 : If the carrying capacity of NTP population (k 1 ) remains within two threshold values( (d+q2E)p1224
c1w1-d-q2E < k 1 < (d+q2E)(p1)+c1w1p1 c1w1-d-q2E225

), then TPP becomes extinct under the condition ( r2(k2-?2 N ) k2 < w2 Z p2+? N ), whereas both NTP226
and zooplankton persist in the system. The possibility of TPP extinction increases with the reduction in the227
avoidance of TPP by zooplankton (?), the half-saturation constant for TPP (p 2 ), and the growth rate of TPP228
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(r 2 ), decreases with the rise of the competitive effect of N on T (? 2 ) and the TPP consumption rate (w 2 ).229
Similarly, for a particular parameter setup (k 2 -? 2 N > 0), we can find a threshold value of the avoidance of230
TPP by zooplankton (?< k2w2 Z N r2(k2-?2 N ) -p2 N )231

, below which TPP may become extinct. On the contrary, for k 2 -? 2 N < 0, TPP extinction dose not depend232
on the avoidance. Because the biological analysis of E 4 found that the harvesting term has little impact on the233
extinction of TPP compared with other equilibrium points. In conclusion, for k 2 -? 2 N < 0, TPP extinction234
dose not depend on the avoidance of TPP by zooplankton (?) and harvest term on zooplankton (q 2 E).235

(vi)E * = (N * , T * , Z * ): When the competitive effects (? 1 ), the fishing coefficients of nontoxic236
phytoplankton (q 1 ), the environmental carrying capacities of nontoxic phytoplankton (k 1 ), and the effort used237
to harvest the population (E) remain very small, whereas the constant intrinsic growth rates of N (r 1 ), there238
may be a possibility of coexistence of all the three species.239

Existence and stability conditions of the equilibrium points.240

4 Equilibrium Existence conditions241

Stability conditions E 0 = (0, 0, 0) Always exist Always unstableE 1 = (k 1 , 0, 0) Always exist (i) c 1 w 1 -d -q242
2 E > 0, ? 2 > k 2 k 1 , k 1 < p 1 (d+q 2 E) c 1 w 1 -d-q 2 E , or (ii) c 1 w 1 -d -q 2 E ? 0, ? 2 > k 2 k 1 E 2 =243
(0, k 2 , 0) Always exist (i) k 1 < r 2 ? 1 k 2 r 2 -q 1 E E 3 = ( N, T , 0) (i) ? 2 > k 2 k 1 , (ii) ? 1 > (? 1 ? 2244
-1)q 1 k 1 E r 1 k 1 + k 1 k 2 (i) c 1 w 1 N p 1 + N -d -q 2 E < c 2 w 2 T p 2 + T +? N , (ii) b1 > 0, c1 > 0 E245
4 = ( N, 0, Z) (i) w 1 > d+q 2 E c 1 , (ii) k 1 > r 1 N r 1 -q 1 E(p 1 +E) (i) r 2 (1 -? 2 N k 2 ) < w 2 Z p 2 +?246
N , (ii) ã2 + b2 < 0, ã2 b2 + c2 > 0 E * = (N * , T * , Z * ) (i) k 1 > q 1 k 1 E r 1 + N * + ? 1 T * , (ii) c 2247
w 2 (p 1 + N * ) > c 1 w 1 N * -(d + q 2 E)(p 1 + N * ) > 0, (iii) positive root of Eq.(3.4) exists (i) D 1 > 0 ,248
(ii) D 3 > 0, (iii) D 1 D 2 -D 3 > 0 Table 1:249

5 Notes250

The existence and stability of these equilibrium points are summarized in Table ?? and ??ig 1. When c 1 w 1 -d251
-q 2 E > 0, equilibria E 2 = (0, k 2 , 0), E 3 = ( N , T , 0), E 1 = (k 1 , 0, 0) and E 4 = ( N , 0, Z) keep stable252
for (0 < k 1 < r2?1k2 r2-q1E ), ( r2?1k2 r2-q1E < k 1 < k2 ?2 ), ( k2 ?2 < k 1 < p1(d+q2E) c1w1-d-q2E ) and253
( (d+q2E)p1 c1w1-d-q2E < k 1 < (d+q2E)(p1)+c1w1p1 c1w1-d-q2E254

), respectively(Fig. 1(a)). Obviously, for k 1 at the different equilibria above, the coexistence of NTP, TPP,255
and zooplankton requires the three ranges (k 1 > r2?1k2 r2-q1E ), (k 1 < k2 ?2 ), and (k 1 > (d+q2E)p1256
c1w1-d-q2E ), respectively. Therefore, the system exhibits these three possible types of bistability, where (i)E 1257
and E 2 . (ii)E 2 and E 4 . (iii)E 3 and E 4 .258

The above three types are locally asymptotically stable for different ranges of k 1 .For k2 ?2 < k 1 < min{259
r2?1k2 r2-q1E , (d+q2E)p1 c1w1-d-q2E }, we can observe the bistability of E 1 and E 2 (Fig.1(b)(c)). If conditions260
(d+q2E)p1 c1w1-d-q2E < k 1 < min{ r2?1k2 r2-q1E , (d+q2E)p1+c1w1p1 c1w1-d-q2E261

} and ( r2(k2-?2 N )k2 < w2 Z p2+?262
N ) hold simultaneous, we can find the bistability of E 2 and E 4 (Fig. 1(d)(e)). On the contrary, if(d+q2E)p1263

c1w1-d-q2E < k 1 < r2?1k2 r2-q1E holds, for either k 1 > (d+q2E)(p1)+c1w1p1 c1w1-d-q2E or r2(k2-?2 N ) k2264
> w2 Z p2+? N , we’ll get the existence of stable E 2 together with unstable E 4 . Identically, for max{ r2?1k2265
r2-q1E , (d+q2E)p1 c1w1-d-q2E } < k 1 < min{ k2 ?2 , (d+q2E)p1+c1w1p1 c1w1-d-q2E266

} together with? 1 ? 2 < 1, c1w1 N p1+ N -d -q 2 E < c2w2 T p2+ T +? N and r2(k2-?2 N ) k2 < w2 Z267
p2+?268

N , we can observe the bistability of E 3 and E 4 (Fig. 1(f)-(i)). Now, let’s discuss the importance of avoiding269
toxic species by zooplankton (?) together with the harvesting term (q 1 E, q 2 E) for the survival of the different270
species groups.271

Firstly, let’s discuss the effect of ? on three types of bistability. It can be seen from the previous analysis that272
the stability of E 1 and E 2 does not depend on the value of ?. However, for the stability of E 3 and E 4 , it is273
related to the critical value of ?. When ? is less than this critical value, E 3 and E 4 remain stable. Thus, ? does274
not affect the bistability of (E 1 , E 2 ); when ? is below some threshold value, we will observe the bistability of275
(E 2 , E 4 ) and (E 3 , E 4 ), and as the ? value increases, the original bistability may disappear.( r2(k2-?2 N )276
k2 > w2 Z p2+? N , c1w1 N p1+ N -d -q 2 E < c2w2 T p2+ T +? N and r2(k2-?2 N ) k2 < w2 Z p2+?277

N . From these conditions, we can see the establishment of the above conclusion.)278
Secondly, let’s discuss the effect of the harvesting term (q 1 E, q 2 E) on three types of bistability. From the279

analysis of the previous data, it can be seen that although the stability of E 1 and E 2 does not depend on the280
value of ?, when humans overfish NTP and zooplankton, that is, q 1 E and q 2 E are too large, it may affect the281
bistability of E 1 and E 2 . For E 3 and E 4 , although their stability is directly related to the threshold value282
of ?, the existence of q 1 E and q 2 E will also affect the threshold value of ?, further influencing the stability of283
E 3 and E 4 . Therefore, q 1 E and q 2 E may affect the bistability of (E 1 , E 2 ), (E 2 , E 4 ) and (E 3 , E 4 );284
the increase of q 1 E and q 2 E may also lead to the disappearance of this bistability.285

In this section, we focus on the local stability and Hopf bifurcation of the delayed model; the delayed system286
(2.2) has the following formdU (t) dt = F (U (t), U (t -? 1 ), U (t -? 2 )),(4.1)287

5



6 NOTES

where U (t) = [N (t), T (t), Z(t)], U (t -? 1 ) = [N (t -? 1 ), T (t -? 1 ), Z(t -? 1 )], U (t -? 2 ) = [N (t -? 2288
), T (t -? 2 ), Z(t -? 2 )].289

6 Notes290

Next, assuming ?1 (t) = N (t) -N * , ? 2 (t) = T (t) -T * , ? 3 (t) = Z(t)291
-Z * at the positive equilibrium point, and linearizing the system (2.2), we can obtaind dt ? ? ? 1 (t) ? 2 (t)292

? 3 (t) ? ? = L ? ? N (t) T (t) Z(t) ? ? + M ? ? N (t -? 1 ) T (t -? 1 ) Z(t -? 1 ) ? ? + S ? ? N (t -? 2 ) T (t293
-? 2 ) Z(t -? 2 ) ? ? ,(4.2)294

whereL = ?F ?U (t) E * , M = ?F ?U (t -? 1 ) E * , S = ?F ?U (t -? 2 ) E * .295
We linearize the system(2.2) about positive equilibrium E * = (N * , T * , Z * ), and getdU (t) dt = LU (t)296

+ M U (t -? 1 ) + SU (t -? 2 ),(4.3)297
Fig. 1:Notes where L = ? ? l 11 l 12 l 13 l 21 l 22 l 23 0 0 l 33 ? ? , M = ? ? 0 0 0 0 0 0 m 31 0 m 33 ? ? , S298

= ? ? 0 0 0 0 0 0 s 31 s 32 s 33 ? ? , U = ? ? ? ? N 1 (?) T 1 (?) Z 1 (?) ? ? ? ? ,299
where N 1 , T 1 , Z 1 are small perturbations around the equilibrium point E * = (N * , T * , Z * ). We havel300

11 = -rN k 1 + w 1 ZN (p 1 + N ) 2 -q 1 E, l 12 = r 1 ? 1 N k 1 , l 13 = - w 1 N p 1 + N , l 21 = r 2 ? 2 T k 1301
+ w 2 ?T Z (p 2 + T + ?N ) 2 , l 22 = r 2 - (2r 2 T + r 2 ? 1 N ) k 2 , l 23 = - w 2 T (p 2 + T + ?N ) , l 33 =302
-d -q 2 E, m 31 = c 1 w 1 p 1 Z (p 1 + N ) 2 , m 33 = c 1 w 1 N (p 1 + N ) , s 31 = c 2 w 2 ?T Z (p 2 + T +303
?N ) 2 , s 32 = c 2 w 2 Z(p 2 + ?N ) (p 2 + T + ?N ) 2 , s 33 = c 2 w 2 T (p 2 + T + ?N ) .304

The characteristic equation for the linearized system (2.2) is obtained asD(?, ? 1 , ? 2 ) ? P (?) + Q(?)e -??1305
+ R(?)e -??2 = 0,(4.4)306

where Case (1):P (?) = ? 3 + A 2 ? 2 + A 1 ? + A 0 , Q(?) = B 2 ? 2 + B 1 ? + B 0 , R(?) = C 2 ? 2 +307
C 1 ? + C 0 ,? 1 = ? 2 = 0.308

In this case, Section 3 covers the analysis of the system when ? 1 = ? 2 = 0.309
Case (2):? 1 = 0, ? 2 > 0.310
In this case, the characteristic equation(4.4) becomesD(?, ? 2 ) ? P (?) + Q(?) + R(?)e -??2 ? ? 3 + A 2 ?311

2 + A 1 ? + A 0 + B 2 ? 2 + B 1 ? + B 0 + (C 2 ? 2 + C 1 ? + C 0 )e -??2 = 0,(4.5)312
putting ? = i?(? > 0) in Eq.(4.5), and separating the real and imaginary parts, we have-(A 2 + B 2 )? 2 +313

(A 0 + B 0 ) = (C 2 ? 2 -C 0 ) cos(?? 2 ) -C 1 ? sin(?? 2 ), -? 3 + (A 1 + B 1 )? = (C 0 -C 2 ? 2 ) sin(?? 2 )314
-C 1 ? cos(?? 2 ). (4.6)315

Squaring and adding the equation(4.6), we obtain[-(A 2 + B 2 )? 2 + (A 0 + B 0 )] 2 + [-? 3 + (A 1 + B 1316
)?] 2 = (C 2 ? 2 -C 0 ) 2 + (C 1 ?) 2 . (4.7)317

Simplifying Eq.(4.7) and substituting ? 2 = , the above equation can be written as?( ) ? 3 + a 2 2 + a 1 + a318
0 = 0,(4.8319

) wherea 2 = -(A 2 + B 2 ) 2 -2(A 1 + B 1 ) -C 2 2 , a 1 = (A 1 + B 1 ) 2 -2(A 0 + B 0 )(A 2 + B 2 ) -2C 0320
C 2 -C 2 1 , a 0 = -C 2 0 .321

(H1):a 2 > 0, a 0 > 0, a 2 a 1 -a 0 > 0.322
If (H1) holds, Eq.(4.8) has no positive roots, which implies all the roots of Eq.(4.5) have negative real parts.323
Therefore, E * is asymptotically stable for all ? 2 > 0 when (H1) holds.324
(H2): a 2 < 0, a 1 < 0, a 0 < 0 or a 2 > 0, a 1 < 0, a 0 < 0 or a 2 > 0, a 1 > 0, a 0 < 0. If (H2) holds,325

Eq.(4.8) has exactly one positive root ? 0 , substituting ? 0 in Eq.(4.6), we obtain-(A 2 + B 2 )? 0 2 + (A 0 +326
B 0 ) = (C 2 ? 0 2 -C 0 ) cos(? 0 ? 2 ) -C 1 ? 0 sin(? 0 ? 2 ), -? 0 3 + (A 1 + B 1 )? 0 = (C 0 -C 2 ? 0 2 )327
sin(? 0 ? 2 ) -C 1 ? 0 cos(? 0 ? 2 ). (4.9)328

For the critical value of ? 2 , we can obtain? 2j = 1 ? 0 arccos { [C 1 + C 2 (A 2 + B 2 )]? 0 4 + [C 1 (A 1329
+ B 1 )-C 0 (A 2 + B 2 )-C 2 (A 0 + B 0 )]? 0 2 + C 0 (A 0 + B 0 ) -(C 0 -C 2 ? 0 2 ) 2 -(C 1 ? 0 ) 2 }+ 2j? ?330
0 , j = 0, 1, 2 ? ? ? . (4.10)331

For the transversality condition, differentiating Eq.(4.5) with respect to ? 2 , we getd? d? 2 = ?(C 2 ? 2 + C332
1 ? + C 0 )e -??2 3? 2 + 2A 2 ? + A 1 + (2B 2 ? + B 1 ) + (2C 2 ? + C 1 )e -??2 .333

Solving ( d? d?2 ) -1 , we obtain( d? d? 2 ) -1 = 3? 2 + 2A 2 ? + A 1 + (2B 2 ? + B 1 ) + (2C 2 ? + C 1334
)e -??2 ?(C 2 ? 2 + C 1 ? + C 0 )e -??2 .335

Then at ? 2 = ? 20 and ? = i? 0 , we can get [Re( d? d? 2 ) ?2=?20,?=i?0 ] -1 = Re[ 3(i? 0 ) 2 + (2A 2 +336
B 2 )(i? 0 ) + A 1 + B 1 (i? 0 )(C 2 (i? 0 ) 2 + C 1 (i? 0 ) + C 0 )(cos(? 0 ? 20 ) -i sin(? 0 ? 20 )) ] + Re[ 2C337
2 (i? 0 ) + C 1 (i? 0 )(C 2 (i? 0 ) 2 + C 1 (i? 0 ) + C 0 ) ]. Now [Re( d? d? 2 ) ?2=?20,?=i?0 ] -1 = Re[ M R338
+ M I i N R + N I i ] + Re[ Q R + Q I i P R + P I i ] = M R N R + M I N I N R 2 + N I 2 + Q R P R + Q I339
P I P R 2 + P IM R = -3? 0 2 + A 1 + B 1 , M I = 2(A 2 + B 2 )? 0 , N R = (C 0 ? 0 -C 2 ? 0 3 ) sin(? 0 ?340
20 ) -C 1 ? 0 2 cos(? 0 ? 20 ), N I = (C 0 ? 0 -C 2 ? 0 3 ) cos(? 0 ? 20 ) + C 1 ? 0 2 sin(? 0 ? 20 ), Q R = C 1341
, Q I = 2C 2 ? 0 , P R = -C 1 ? 0 2 , P I = C 0 ? 0 -C 2 ? 0 3 . Then [Re( d? d? 2 ) ?2=?20,?=i?0 ] -1 = A B342
+ C D = AD + BC BD ,(4.11)343

hereA = M R N R + M I N I , B = N R 2 + N I 2 , C = Q R P R + Q I P I , D = P R 2 + P I 2 .344
From this, we can getsgn[Re( d? d? 2 ) ?2=?20,?=i?0 ] -1 = sgn[AD + BC].345
If (H3): AD + BC = 0 holds, the transversal condition sgn[Re( d? d?2 ) ?2=?20,?=i?0 ] -1 = 0. From the346

above analysis, the following theorem can be drawn For ? 1 = 0 and ? 2 > 0, we have the following results: (i)If347
(H1) holds, then the equilibrium E * is asymptotically stable for all ? 2 > 0.348
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(ii)If (H3) holds, and (H2) holds, then the equilibrium E * is locally asymptotically stable for all ? 2 < ? 20349
together with unstable for ? 2 > ? 20 and undergoes Hopf bifurcation at ? 2 = ? 20 .350

7 Case (3):351

? 1 > 0, ? 2 = 0.352
In this case, the characteristic equation(4.4) becomes as followsD(?, ? 1 ) ? P (?) + R(?) + Q(?)e -??1 ? ? 3353

+ A 2 ? 2 + A 1 ? + A 0 + (B 2 ? 2 + (C 2 ? 2 + C 1 ? + C 0 ) + B 1 ? + B 0 )e -??1 = 0. (4.12)354
putting ? = i?(? > 0) in Eq.(4.12), and separating the real and imaginary parts, we have-(A 2 + C 2 )? 2 +355

(A 0 + C 0 ) = (B 2 ? 2 -B 0 ) cos(?? 1 ) -B 1 ? sin(?? 1 ), -? 3 + (A 1 + C 1 )? = (B 0 -B 2 ? 2 ) sin(?? 1 )356
-B 1 ? cos(?? 1 ). (4.13)357

Squaring and adding the equation(4.13), we obtain[-(A 2 + C 2 )? 2 + (A 0 + C 0 )] 2 + [-? 3 + (A 1 + C 1358
)?] 2 = (B 2 ? 2 -B 0 ) 2 + (B 1 ?) 2 . (4.14)359

Based on the calculation method for case (2), we can simplify (4.14) to the following?( ) ? 3 + b 2 2 + b 1 +360
b 0 = 0,(4.15)361

whereb 2 = -(A 2 + C 2 ) 2 -2(A 1 + C 1 ) -B 2 2 , b 1 = (A 1 + C 1 ) 2 -2(A 0 + C 0 )(A 2 + C 2 ) -2B 0362
B 2 -B 2 1 , b 0 = -B 2 0 .363

Theorem 4.1.364

8 Notes365

(H4): b 2 > 0, b 0 > 0, b 2 b 1 -b 0 > 0.366
If (H4) holds, Eq.(4.15) has no positive roots, which implies all the roots of Eq.(4.12) have negative real parts.367

Therefore, E * is asymptotically stable for all ? 1 > 0 when (H4) holds. (H5):b 2 < 0, b 1 < 0, b 0 < 0 or b 2 >368
0, b 1 < 0, b 0 < 0 or b 2 > 0, b 1 > 0, b 0 < 0.369

If (H5) holds, Eq.(4.15) has exactly one positive root ?0 , substituting ?0 in Eq.(4.13), we obtain-(A 2 + C 2370
) ?0 2 + (A 0 + C 0 ) = (B 2 ?0 2 -B 0 ) cos( ?0 ? 1 ) -B 1 ?0 sin( ?0 ? 1 ), -?0 3 + (A 1 + C 1 ) ?0 = (B 0 -B371
2?0372

2 ) sin( ?0 ? 1 ) -B 1 ?0 cos( ?0 ? 1 ). (4.16)373
For the critical value of ? 1 , we can obtain? 1j = 1 ?0 arccos{ [B 1 + B 2 (A 2 + C 2 )] ?0 4 + [B 1 (A 1 +374

C 1 )-C 0 (A 2 + C 2 )-B 2 (A 0 + C 0 )] ?0 2 +B 0 (A 0 + C 0 ) -(B 0 -B 2 ?0 2 ) 2 -(B 1 ?0 ) 2 }+ 2j? ?0 , j375
= 0, 1, 2 ? ? ? . (4.17)376

For the transversality condition, differentiating Eq.(4.13) with respect to ? 1 , we getd? d? 1 = ?(B 2 ? 2 +377
B 1 ? + B 0 )e -??1 3? 2 + 2A 2 ? + A 1 + (2C 2 ? + C 1 ) + (2B 2 ? + B 1 )e -??1 .378

Solving ( d? d?1 ) -1 , we obtain( d? d? 1 ) -1 = 3? 2 + 2A 2 ? + A 1 + (2C 2 ? + C 1 ) + (2B 2 ? + B 1379
)e -??1 ?(B 2 ? 2 + B 1 ? + B 0 )e -??1 .380

Then at ? 1 = ? 10 and ? = i ?0 , we can get[Re( d? d? 1 ) ?1=?10,?=i ?0 ] -1 = Re[ 3(i ?0 ) 2 + (2A 2 + C381
2 )(i ?0 ) + A 1 + C 1 (i ?0 )(B 2 (i ?0 ) 2 + B 1 (i ?0 ) + B 0 )(cos( ?0 ? 10 ) -i sin( ?0 ? 10 )) ] + Re[ 2B 2 (i382
?0 ) + B 1 (i ?0 )(B 2 (i ?0 ) 2 + B 1 (i ?0 ) + B 0 ) ]. Now [Re( d? d? 1 ) ?1=?10,?=i ?0 ] -1 = Re[ M R + M383
I i N R + N I i ] + Re[ Q R + Q I i P R + P I i ] = M R N R + M I N I N R 2 + N I 2 + Q R P R + Q I P I384
P R 2 + P I 2 ,385

whereM R = -3 ?0 2 + A 1 + C 1 , M I = 2(A 2 + C 2 ) ?0 , N R = (B 0 ?0 -B 2?0386
3 ) sin( ?0 ? 10 ) -C 1 ?0 2 cos( ?0 ? 10 ),N I = (B 0 ?0 -B 2 ?0 3 ) cos( ?0 ? 10 ) + B 1 ?0 2 sin( ?0 ? 10 ),387

Q R = B 1 , Q I = 2B 2 ?0 , P R = -B 1 ?0 2 , P I = B 0 ?0 -B 2 ?0 3 . Then [Re( d? d? 1 ) ?1=?10,?=i? ] -1388
= A * B * + C * D * = A * D * + B * C * B * D * ,(4.18)389

Balancing Coexistence: Ecological Dynamics and Optimal Tax Policies in a Dual Phytoplankton-Zooplankton390
System Influenced by Toxin Avoidance and Harvesting391

9 Notes392

hereA * = M R N R + M I N I , B * = N R 2 + N I 2 , C * = Q R P R + Q I P I , D * = P R 2 + P I 2 .393
From this, we can get[Re( d? d? 1 ) ?1=?10,?=i? ] -1 = sgn[A * D * + B * C * ].394
If (H6): A * D * + B * C * = 0 holds, the transversal condition [Re( d? d?1 ) ?1=?10,?=i? ] -1 = 0. From395

the above analysis, the following theorem can be drawn For ? 2 = 0 and ? 1 > 0, we have the following results:396
(i)If (H4) holds, then the equilibrium E * is asymptotically stable for all ? 1 > 0.397

(ii)If (H6) and (H5) hold, then the equilibrium E * is locally asymptotically stable for all ? 1 < ? 10 together398
with unstable for ? 1 > ? 10 and undergoes Hopf bifurcation at ? 1 = ? 10 . ? 1 is fixed in (0, ? 10 ] and ? 2 >399
0. We consider the gestation delay ? 1 to be stable in the interval (0, ? 10 ], taking ? 2 as a control parameter.400
Let ? = u + i? be the root of Eq. ??4.4). Putting this value in Eq.(4.4), separating real and imaginary parts,401
we obtain u 3 -3u? 2 + A 2 (u 2 -? 2 ) + A 1 u + A 0 + (B 2 u 2 -B 2 ? 2 + B 1 u + B 0 )e -u?1 cos(?? 1 +(2B402
2 u? + B 1 ?)e -u?1 sin(?? 1 ) + (C 2 u 2 -C 2 ? 2 + C 1 u + C 0 )e -u?1 cos(?? 2 ) + (2C 2 u? + C 1 ?) sin(??403
2 ) = 0. (4.19) 3u 2 ? -? 3 + 2A 2 u? + A 1 ? -(B 2 u 2 -B 2 ? 2 + B 1 u + B 0 ) sin(?? 1 ) + (2B 2 u? +B 1404
?)e -u?1 cos(?? 1 ) -(C 2 u 2 -C 2 ? 2 + C 1 u + C 0 ) sin(?? 2 ) + (2C 2 u? +C 1 ?)e -u?2 cos(?? 2 ) = 0.A 2405
? 2 -A 0 = (-B 2 ? 2 + B 0 ) cos(?? 1 ) + (C 0 -C 2 ? 2 ) cos(?? 2 ) + B 1 ? sin(?? 1 ) + C 1 ? sin(?? 2 ).406
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(4.21) ? 3 -A 1 ? = -(B 0 -B 2 ? 2 ) sin(?? 1 ) + B 1 ? cos(?? 1 ) -(C 0 -C 2 ? 2 ) sin(?? 2 ) + C 1 ? cos(??407
2 ). (4? 6 + ã4 ? 4 + ã3 ? 3 + ã2 ? 2 + ã0 = 0, (4.23) where ã4 = -(B 2 2 + C 2 2 -A 2 2 ), ã3 = -2(B 2 C 1408
-B 1 C 2 ) sin(?? 1 -?? 2 ), ã2 = -((B 1 2 -2B 0 B 2 + C 1 2 -2C 0 C 2 ) + 2(B 1 C 1 -2A 0 A 2 -A 2 1 -B 2 ))409
cos(?? 1 -?? 2 ), ã0 = -(B 0 2 + C 0 2 -A 0 2 ).410

10 Notes411

-? 2 cos(?? 2 ) + ? 1 sin(?? 2 ) = ? 6 -? 5 cos(?? 1 ) + ? 4 sin(?? 1 ), ??4.25) where? 1 = C 2 ? 2 -C 0 , ? 2 =412
-C 1 ?, ? 3 = A 0 -A 2 ? 2 , ? 4 = B 0 -B 2 ? 2 , ? 5 = B 1 ?, ? 6 = ? 3 -A 1 ?.413

Without losing generality, the Eq.( 4.23) has finite positive roots ? 1 , ? 2 , ? ? ? , ? k , for every fixed ?,414
there exists a sequence {? j 2i |j = 0, 1, 2...}, where? (j) 2i = 1 ?i tan -1 [ (? 1 ? 4 + ? 2 ? 4 ) sin(? i ? 1 ) -(?415
1 ? 5 -? 2 ? 4 ) cos(? i ? 1 ) + ? 1 ? 6 + ? 2 ? 3 (? 1 ? 5 -? 2 ? 4 ) sin(? i ? 1 ) + (? 2 ? 5 + ? 1 ? 4 ) cos(? i416
? 1 ) + ? 1 ? 3 -? 2 ? 4 + k? ?i j = 0, 1, 2, ? ? ? (4.26) let ? 2 = min{? (j) 2i |i = 0, 1, 2, ...k, j = 0, 1, 2...},417
when ? 2 = ? 2 , ? = ? i | ?2= ?2 , i = 1, 2, 3, .418

.., the characteristic equation (4.4) has purely imaginary roots ±i ?. Then, we will verify the transversality419
condition, differentiating the characteristic equation (4.4) with respect to ? 2 , we can obtain[Re( d? d? 2 ) ?2=420
?2,?=i ? ] -1 = Re[ 3(i ?) 2 + 2A 2 (i ?) + A 1 (i ?)(C 2 (i ?) 2 + C 1 (i ?) + C 0 )(cos( ? ? 2 ) -i sin( ? ? 2 ))421
] + Re[ 2C 2 (i ?) + C 1 (i ?)(C 2 (i ?) 2 + C 1 (i ?) + C 0 ) ]. Now [Re( d? d? 2 ) ?2= ?2,?=i ? ] -1 = Re[ M422
R + M I i N R + N I i ] + Re[ Q R + Q I i P R + P I i ] = M R N R + M I N I N R 2 + N I 2 + Q R P R +423
Q I P I P R 2 + P I 2 ,424

whereM R = -3 ? 2 + A 1 , M I = 2A 2 ?, N R = (C 0 ? -C 1 ? 2 -C 2 ? 3 ) sin( ?? 2 )425
,N I = (C 0 ? -C 2 ? 3 ) cos( ?? 2 ) + C 1 ? 2 sin( ?? 2 ), Q R = C 1 , Q I = 2C 2 ?, P R = -C 1 ? 2 , P I =426

C 0 ? -C 2 ? 3 . Then [Re( d? d? 2 ) ?2= ?2,?=i ? ] -1 = E F + G H = EH + F G F H ,(4.27)427
here E = M R N R + M I N I , F = N R 2 + N I 2 , G = Q R P R + Q I P I , H = P R 2 + P I 2 .428

11 Notes429

For system(2.2), assume (H7) holds with ? 1 is fixed in (0, ? 10 ] and ? 2 > 0, then the equilibrium E * is locally430
asymptotically stable for ? 2 ? (0, ? 2 ) whereas system (2.2) undergoes Hopf bifurcation at ? 2 = ? 2 .431

Case(5): ? 2 is fixed in (0, ? 20 ] and ? 1 > 0, so take ? 1 as a control parameter; the analysis is the same as432
case(4), so we omit it.433

From previous studies, overfishing may lead to the extinction of populations. However, in the society, the434
adequate protection of the ecosystem is a common problem we need to face. In the face of the increasingly severe435
harmful effects of overfishing on ecosystems, people began to find the most suitable methods for fishery control436
in various areas of sustainable development policies, for example, seasonal fishing, property leasing, taxation,437
licensing fees, etc. Taxes are generally considered to be better than other regulatory approaches, so that we will438
view the optimal tax policy for the double phytoplankton -single zooplankton system based on model ??2.3).439
Here, we take E as a time-dependent dynamic variable controlled by equations. Therefore, there is the following440
equation.E(t) = ?Q(t), 0 ? ? ? 1, dQ dt = I(t) -?Q(t), Q(0) = Q 0 .(5.1)441

Where Q(t) is the amount of capital invested in fisheries at time t, I(t) is the total investment rate(in physical442
form) at time t and ? is the constant depreciation rate of capital. Suppose that the effort E at any time is443
proportional to the instantaneous amount of investment capital. For example, if Q(t) represents the number of444
standard fishing vessels that can be used, it is reasonable to assume that Q(t) and E should be proportional.445
When ? = 1, it can be considered that the maximum fishing capacity(E)is equal to the number of available446
vessels at time t (Q(t)). When ? = 0, it means that even though there may be fishing boats, the fishing is not447
expanded; it also reflects the over-exploitation of fisheries. At this time the fish population has been seriously448
depleted, so fishing vessels can no longer be used. These are simulated capital levels may be adjusted, thus prove449
the reasonableness of the equation (5.2). Regulators control the development of fisheries by imposing a tax (v450
> 0) on the unit biomass of terrestrial fish. When (v < 0) can be understood as any subsidy to fishermen. Net451
income of fishermen(’Net income’ for short) is E[(u 1 -v)q 1 N + (u 2 -v)q 2 N -C],452

where u i , i = 1, 2 is the constant price of unit biomass of nontoxic phytoplankton and zooplankton,453
respectively. C is the fixed cost per unit of harvesting effort.454

We assume the gross profit margin on capital investment is proportional to this ’Net income.’ So, we haveI =455
E?[(u 1 -v)q 1 N + (u 2 -v)q 2 Z -C], 0 ? ? < 1.456

(5.2)457
For ? = 1, Eq.(5.2) shows that the highest investment rate at any time is equal to the net income of the458

fishermen at that time. ? = 0 can only be used when the net income of fishermen is negative; that is, current459
capital assets cannot be divested. If the fishery is operating at a loss and allows capital to be withdrawn, the only460
owner of the fishery will benefit by allowing the capital assets to be continuously withdrawn, because negative461
investment means withdrawal of investment, so it is the case of I < 0, ? > 0. By combining Eqs.(5.1) and (5.2),462
we can getdE dt = E{??[(u 1 -v)q 1 N + (u 2 -v)q 2 Z -C] -?}.(5.3)463

From this we can getsgn[Re( d? d? 2 ) ?2= ?2,?=i ? ] -1 = sgn[EH + F G].464
If (H7): EH + F G = 0 holds, the transversal condition sgn[Re( d? d?2 ) ?2= ?2,?=i ? ] -1 = 0. From the465

above analysis, we have the following theorem.466
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Theorem 4.3.467

12 V.468

Optimal Tax Policy469

13 Notes470

Fishermen and regulators are two different parts of society. Therefore, the income they receive is society’s income471
accumulated through fisheries. The net economic income to society isM E = E[(u 1 -v)q 1 N + (u 2 -v)q 2 Z -C]472
+ E[v(q 1 N ) + v(q 2 N )],473

this is equal to the net economic income of fishermen plus the economic income of regulators. Therefore474
without considering the time delay, Eq.( 2.3) can be rewritten as? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?475
? ? dN dt = r 1 N (1 - N + ? 1 T k 1 ) - w 1 N Z p 1 + N -q 1 EN, dT dt = r 2 N (1 - T + ? 2 N k 2 ) - w 2 T476
Z p 2 + T + ?N , dZ dt = c 1 w 1 N Z p 1 + N - c 2 w 2 T Z p 2 + T + ?N -dZ -q 2 EZ, dE dt = E{??[(u 1477
-v)q 1 N + (u 2 -v)q 2 Z -C] -?}.478

(5.4)479
Next, we will use the principle of Pontryagin’s maximum to get the path of the best tax policy. If the fish480

population stays along this path, then regulators can ensure that their goals are achieved. The goal of regulatory481
agencies is to maximize the total net income of society as a result of harvesting activities. Specifically, the goal482
is to maximize revenue over a continuous time stream (J ).J = +? 0 E(t)e -?t [u 1 q 1 N + u 2 q 2 Z -C]dt,(5.5)483

where ? is the discounting factor. Therefore, our goal is to determine an optimal tax v = v(t) that maximizes484
compliance with Eq.(5.4) and constrains v min ? v(t) ? v max on the control variable v(t). When v min < 0,485
it will have the effect of accelerating the rate of fishery expansion. The Hamiltonian of the problem is obtained486
byH = (u 1 q 1 N + u 2 q 2 Z -C)Ee -?t + ? 1 N [r 1 (1 - N + ? 1 T k 1 ) - w 1 Z p 1 + N -q 1 E] +? 2 [r 2 T487
(1 -T +?1N k2 ) -w2T Z p2+T +?N ] + ? 3 [ c1w1N Z p1+N -c2w2T Z p2+T +?N -dZ -q 2 EZ] +? 4 E{??[(u488
1 -v)q 1 N + (u 2 -v)q 2 Z -C] -?},(5.6)489

where ? 1 , ? 2 , ? 3 and ? 4 are the adjoint variables. For v ? [v min , v max ], the Hamiltonian must be490
maximized. Assuming that the control constraint is not bound, that is, the optimal solution does not appear as491
v = v min or v = v max . We can get by singular control ??9] ?H ?v = -? 4 E??(q 1 N + q 2 Z) = 0 ? ? 4 = 0.492

(5.7)493
Now, the adjoint equations ared? 1 dt = - ?H ?N = -[u 1 q 1 Ee -?t +? 1 (r 1 - 2r 1 N + r 1 ? 1 T k 1 - w 1494

p 1 Z (p 1 + N ) 2 -q 1 E) + ? 2 [ w 2 ?T Z (p 2 + T + ?N ) 2 - r 2 ? 2 T k 2 ] + ? 3 ( c 1 w 1 p 1 Z (p 1 + N495
) 2 + c 2 w 2 ?T Z (p 2 + T + ?N ) 2 )496

,d? 2 dt = - ?H ?T = -[? 1 ( r 1 ? 1 N k 1 ) + ? 2 [r 2 (1 - 2T + ? 2 N k 2 ) - w 2 Z(p 2 + ?N ) (p 2 + T +497
?N ) 2 ] -? 3 ( c 2 w 2 Z(p 2 + ?N ) (p 2 + T + ?N ) 2 ), d? 3 dt = - ?H ?Z = -[u 2 q 2 Ee -?t -? 1 ( w 1 N p 1498
+ N ) -? 2 ( w 2 T p 2 + T + ?N ) + ? 3 ( c 1 w 1 N p 1 + N - c 2 w 2 T p 2 + T + ?N -d -q 2 E)], d? 4 dt =499
- ?H ?E = -[(u 1 q 1 N + u 2 q 2 Z -C)e -?t -? 1 q 1 N -? 3 q 2 Z].(5.8)500

Now start with Eqs.(5.8) and (5.7), using the equilibrium equation we haved? 1 dt =-u 1 q 1 Ee -?t -? 1 [- r501
1 N k 1 + w 1 N Z (p 1 + N ) 2 ] -? 2 [ w 2 ?T Z (p 2 + T + ?N ) 2 - r 2 ? 2 T k 2 ] -? 3 [ c 1 w 1 p 1 Z (p 1 +502
N ) 2 + c 2 w 2 ?T Z (p 2 + T + ?N ) 2 ]503

,d? 2 dt = -? 1 [ r 1 ? 1 N k 1 ] -? 2 [ w 2 T Z (p 2 + T + ?N ) 2 ] -? 3 [ c 2 w 2 Z(p 2 + ?N ) (p 2 + T +504
?N ) 2 ]505

,d? 3 dt = -u 2 q 2 Ee -?t + ? 1 ( w 1 N p 1 + N ) + ? 2 ( w 2 T p 2 + T + ?N506
).507
(5.9)508
Using the second and third equations of Equation (5.9) from the fourth equation of Equation (5.8), we can509

obtaind?1 dt = M 1 e -?t + M 2 ? 1 + M 3 ? 2 ,510
whereM 1 = (C -u 1 q 1 N )? + u 2 q 2 Z(q 2 E -?) q 1 N , M 2 = - w 1 q 2 N Z (p 1 + N )q 1 N , M 3 = -511

w 2 q 2 T Z (p 2 + T + ?N )q 1 N .512
The solution of this linear equation is? 1 = N 0 e -M2t - M 1 e -?t M 2 + ? - M 3 ? 2 M 2 .513
(5.10)514
Using the same method as above, we can get? 3 = I 0 e H2t - H 1 e -?t H 2 + ? ,(5.11)515
whereH 1 = [ (C -u 2 q 2 Z)? -q 1 N (u 1 ? + M 1 ) q 2 Z + M 1 M 2 q 1 N (M 2 + ?)q 2 Z ], H 2 = M 2 M516

3 q 1 N q 2 M 2 Z .517
Identicallyd? 2 dt = R 1 e -?t + R 2 ? 2 ,(5.12)518
whereR 1 = M 1 M 2 + ? + H 1 H 2 + ? ( c 2 w 2 Z(p 2 + ?N ) (p 2 + T + ?N ) 2 ), R 2 = M 3 M 2 ( r 2 ?519

1 N k 1 ) - w 2 T Z (p 2 + T + ?N ) 2 .520
So we can get ? 1? 1 = N 0 e M2t - M 1 e -?t M 2 + ? - M 3 (W 0 e R2t -R1e -?t R2+? ) M 2 .521
The shadow price ? 1 e -?t is bounded as t ? ?, N 0 = 0 and W 0 = 0, then we can obtain? 1 = - M 1 e -?t522

M 2 + ? - M 3 M 2 (e R2t - R 1 e -?t R 2 + ? ).523
(5.13) Now use Eqs.(5.11), (5.12) and (5.13) in the first of Eq.(5.9), we have[ (C -u 1 q 1 N * )? + u 2 q 2 Z524

* (q 2 E * -?) q 1 N * ]e -?t + w 2 q 2 N * Z * (p 1 + N * )q 1 N * [ M 1 e -?t M 2 + ? - M 3 M 2 (e R2t - R525
1 e -?t R 2 + ? )] +[ w2q2T * Z * (p2+T * +?N * )q1N * ][ R1e -?t R2+? ] + u 1 q 1 E * e -?t + [ M1e -?t526
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15 NOTES

M2+? -M3 M2 (e R2t -R1e -?t R2+? )][-r1N * k1 + w1N * Z * (p1+N * ) 2 ] = ( R1e -?t R2+? )[ w2?T * Z *527
(p2+T * +?N * ) 2 -r2?2T * k2 ] + ( H1e -?t H2+? )[ c2w2Z * (p2+?N * ) (p2+T * +?N * ) 2 ].528

(5.14)529
Because of the computational complexity, our optimal equilibrium solution can be expressed asT * = [(c 1 w530

1 -?)N * -?p 1 ](p 2 + ?N * ) [(c 2 w 2 -?)p 1 + (c 2 w 2 -c 1 w 2 -?)N * ] , Z * = r 1 ( p1+N * w1k1 )(k 1 -N *531
-? 1 T * ).(5.15)532

N * available from the following equationr 2 (k 2 -T * -? 2 N * )(p 2 + T * + ?N * ) -w 2 k 2 Z * = 0.533
(5.16)534
E * available from the following equationr 1 q 1 (1 - N * + ? 1 T * k 1 ) - w 1 Z * q 1 (p 1 + N * ) = c 1 w 1535

N * q 2 (p 1 + N * ) - c 2 w 2 T * q 2 (p 2 + T * + ?N * ) - d q 2 .536
(5.17)537
From the complex calculation results, it can be seen that T * and Z * are functions of v. Therefore, we can538

express this function as follows[ (C -u 1 q 1 N * )? + u 2 q 2 Z * (q 2 E * -?) q 1 N * ]e -?t + w 2 q 2 N * Z *539
(p 1 + N * )q 1 N * [ M 1 e -?t M 2 + ? - M 3 M 2 (e R2t - R 1 e -?t R 2 + ? )] +[ w2q2T * Z * (p2+T * +?N540
* )q1N * ][ R1e -?t R2+? ] + u 1 q 1 E * e -?t + [ M1e -?t M2+? -M3 M2 (e R2t -R1e -?t R2+? )][-r1N * k1 +541
w1N * Z * (p1+N * ) 2 ] -( R1e -?t R2+? )[ w2?T * Z * (p2+T * +?N * ) 2 -r2?2T * k2 ] -( H1e -?t H2+? )[542
c2w2Z * (p2+?N * ) (p2+T * +?N * ) 2 ] = f (v).543

(5.18)544
If v * exists, let v = v * be the solution of f (v). Using the value of v * , we can get the optimal solution (N (v545

* ), T (v * ), Z(v * ), E(v * )). Here, we establish the existence of an optimal equilibrium solution satisfying the546
necessary condition of the maximum principle. As Clark [23] pointed out, it is complicated to find the optimal547
path composed of explosive control and unbalanced singular control. Because the current model is much more548
complex than Clark’s model, we only consider an optimal equilibrium solution. If we can begin to549

14 VI. Numerical Simulations550

15 Notes551

In Fig. 3, we plot the time series of ? = 0, ? = 10, ? = 1000 in the first ten days, where the other parameter552
values and initial conditions are the same as in Table 2. When q 1 = q 2 = 0 and ? = 0, we can observe that553
NTP and TPP tend to perish at a fast linear speed. It is obvious that when ? increases to 10, the concentrate of554
TPP will first increase to a certain concentration, then decrease and finally tend to extinction, while at this time,555
NTP still maintains a rapid decline rate until it is extinct(fig. 3(a)(b)). On the contrary, when ? = 0, we take q556
1 = 0.4, q 2 = 1.2, and q 1 = 2, q 2 = 2.5, respectively. We can observe that with the increase of q 1 and q 2 ,557
NTP and zooplankton tend to become extinct at a faster rate of decline, while TPP increases more rapidly(fig.558
3(c)(d)). Based on the values of q 1 and q 2 of (fig. 3(c)(d)), we increase ? to 10. Through comparison, we can559
find that the curves of NTP and zooplankton have almost no change, but the increasing speed of TPP is still560
accelerated(fig. 3(e)(f)). To further explore the influence of ?, we fixed q 1 and q 2 as 2 and 2.5, respectively.561
And increased the value of ? from 10 to 1000. At this time, We can observe that the concentration of NTP, TPP562
and zooplankton has almost no change(fig. 3(g)(h)). Finally, when ? exists and is fixed at 10, we increase the563
concentrations of q 1 and q 2 to 6 and 8, respectively. At this time, we can observe that NTP and zooplankton564
accelerate the decline rate, while TPP has no obvious change(fig. 3(i)(j)).565

In Fig. 4, we draw a long-term time series diagram of the system (2.3). We fixed that q 1 and q 2 are both 0.566
In fig. 4(a)(b), we can observe the dynamic change of ? from 0 to 10. First, we take ? = 0, in fig. 4(a), we will567
find the extinction of TPP, while NTP and zooplankton oscillate in the form of limit cycles. Next, we increase ?568
to 10, observe the fig. 4(b), all species are in a coexistence state, and the system is stabilized to a periodic orbit.569
These periods show large oscillations of all populations. Secondly, when we fix ? = 0 and increase q 1 = q 2 =570
0.1 to q 1 = q 2 = 0.36, we can find that when q 1 and q 2 are within a certain range, NTP and TPP will coexist,571
and zooplankton will tend to become extinct(fig. 4(c)(d)). Finally, when we fix ? = 10 and increase q 1 = q 2572
= 0.36 to q 1 = q 2 = 0.37, we will find that the coexistence of NTP and TPP disappears, and then only TPP573
exists and tends to be stable, while NTP and zooplankton tend to be extinct(fig. 4(e)(f)). Now, to explore the574
influence of pregnancy delay (? 1 ) and toxin onset delay(? 2 ) on the stability of equilibrium point in different575
cases. First, we need to set a set of parameters as followsr 1 = 2, r 2 = 3, ? 1 = 0.3, ? 2 = 0.1, k 1 = 2500, k 2576
= 3000, w 1 = w 2 = 0.5, p 1 = p 2 = 50, c 1 = c 2 = 0.45, d = 0.05, ? = 0.5, q 1 = 0.2, q 2 = 0.3, E = 1. (6 1)577

With initial values (N 0 , T 0 , Z 0 ) = (400, 300, 500), we perform numerical simulations to verify the578
theoretical results of the previous delayed system (2.2). For these parameters, we take (6.1) into the delayed579
system (2.2), the complex dynamical behavior of the system has been observed with time delay.580

Case i: when ? 1 = 0, ? 2 > 0, in this case, [Re( d? d?2 ) ?2=?20,?=i?0 ] -1 > 0, the transversality condition is581
contented. So when ? 2 < ? 20 (Fig. ??(a)(b)), the positive equilibrium E * is locally asymptotically stable, the582
positive equilibrium E * is unstable when ? 2 > ? 20 (Fig. ??(a)(b)), when ? 2 = ? 20 , the system undergoes583
Hopf bifurcation around the positive equilibrium E * . (Fig. ??(a)(b)) shows the trajectories and phase portrait584
of system (2.2) for ? 1 = 0, ? 2 = 1. It can be clearly seen that the system (2.2) will converge to the positive585
equilibrium point E * . And (Fig. ??(a)(b)) shows the trajectories and phase portrait of the system (2.2) for ? 1586
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= 0, ? 2 = 1.08. In this case, the delay system (2.2) has a periodic solution near the positive equilibrium point587
(E * ).588

Case ii : when ? 1 > 0, ? 2 = 0, we change the values of k 1 and k 2 in (6.1) to k 1 = 150, k 2 = 250, and the589
others remain unchanged. [Re( d? d?1 ) ?1=?10,?=i ?0 ] -1 > 0, the transversality condition is satisfied. (Fig.590
??(a)(b)) shows the trajectories and phase portrait of the system (2.2) for ? 1 = 0.7, ? 2 = 0. It can be seen591
that although the final equilibrium point tends to be stable, there is no oscillation, indicating that there is no592
periodic solution in this case.593

Case iii : when ? 1 = 0.9 in stable interval (0, ? 10 ), and take ? 2 > 0 as the parameter, [Re( d? d?2 ) ?2=594
?2,?=i ? ] -1 = 0, the transversality condition is satisfied. So when shows the trajectories and phase portrait595
of the system (2.2) for ? 1 = 0.9, ? 2 = 1.06. It can be clearly seen that the system (2.2) will converge to the596
positive equilibrium point E * . And (Fig. ??(a)(b)) shows the trajectories and phase portrait of the system (2.2)597
for ? 1 = 0.9, ? 2 = 1.09; we find the delayed system (2.2) has periodic solutions near the positive equilibrium598
point E * in this case.599

Therefore, through the above numerical simulation, we can evidently find the system is stable for small values600
of the delay, but as the value of delay crosses its critical value, the system loses its stability and undergoes601
Hopf-bifurcation. Thus the limit cycle exists for ? 1 > ? 10 , ? 2 > ? 20 and ? 2 > ? 2 .602

The dynamic changes of the system ( 1 ) with different ?, q 1 and q 2 in the first 10 days, other parameter603
values and initial conditions are the same as Table 2. (a)(b) : In the case of q 1 = q 2 = 0, ? = 0 and ? =604
10, the TPP concentration will fluctuate and the NTP concentration will barely change. (c)(d) : For ? = 0, the605
concentrations of q 1 and q 2 increase, and both NTP and TPP concentrations accelerate towards extinction.606
(e)(f) : Based on (c)(d), for ? = 10, TPP reached a higher flowering concentration, while NTP still maintained607
a lower concentration. (g)(h) : Based on (f), for ? = 1000, NTP and TPP concentrations are almost unchanged.608
(i)(j): for ? = 10, we increase the concentrations of q 1 and q 2 to 6 and 8, respectively. NTP and zooplankton609
accelerate the decline rate, while TPP has no obvious change.610

16 Notes611

The long-term dynamics of the system (2.1), all other parameter values are the same as Table 2. (a): When q612
1 = q 2 = 0, NTP and zooplankton with initial concentrations (500,200,1000) oscillate and TPP populations613
become extinct. (b): For ? = 10, all populations survive and the system stabilizes to a limit cycle. (c)(d) : For ?614
= 0, 0 ? q 1 =q 2 ? 0.36, NTP and TPP can coexist. (e)(f): when we fix ? = 10 and increase q 1 = q 2 = 0.36615
to q 1 = q 2 = 0.37 , we will find that the coexistence of NTP and TPP disappears, and then only TPP exists616
and tends to be stable, while NTP and zooplankton tend to be extinct.617

17 Notes618

The behavior of the system(2.2) for ? 1 = 0,? 2 = 1 with other parameters chosen in (6.1).619
The behavior of the system(2.2) for ? 1 = 0,? 2 = 1.08 with other parameters chosen in (6.1).620
The behavior of the system(2.2) for ? 1 = 0.7,? 2 = 0 with other parameters chosen in (6.1).621

18 Notes622

when we increase the time delay to more than this critical value, the system will become unstable, and then Hopf623
bifurcation occurs at the critical time. Considering the practical significance of the research, in section 5, we use624
the principle of Pontryagin’s maximum to study the optimal tax policy of the system without time delay, we625
obtained the optimal path of the optimal tax policy. In addition, we use the parameters and initial values given626
in Table 2 and (6.1) to simulate several cases of double-delay systems in Matlab to verify all theoretical results.
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.1 Notes

Ref628
), E(v * )) at any initial state in [0, S] to reach its maximum benefit in a limited time S 0 . The period [0, S]629

may be a planning cycle, or it may be the shortest cycle closest to F * c , so we take S to be the shortest time630
to reach631

+ /{0} be the optimal equilibrium. Now, we seek min S 0 (v) subject to the solution to Eq. ??5.5).632
Using the maximum principle, we will get the adjoint variables ? 1 , ? 2 , ? 3 and ? 4 as633
(5.20)634
The adjoint variables ? 1 , ? Eq.(5.19) specifies a set of initial conditions for ? 1 , ? 2 , ? 3 and ? 4 , and635

Eq.(5.20) uses these initial conditions to determine the unique solution of ? 1 , ? 2 , ? 3 and ? 4 . Therefore, it636
is easy to obtain the optimal tax as follows:637

(5.22)638
The optimal path in [0, S] is the solution of Eq.(5.5) in its elementary state. We will now combine these two639

stages to obtain the optimal tax policy and optimal path in an infinite range:640
From the above analysis, we can easily observe the following points:641
(i) From Eqs.(5.7) and (5.11)-(5.13), we note that ? i e -?t , (i = 1, 2, 3, 4), where ? i is an adjoint variable,642

which remains unchanged in an optimal balance time interval, therefore, they satisfy the transversal condition,643
that is, they remain bounded to t ? ?.644

(ii) Considering the coexistence equilibrium point645
The fourth equation of Eq.(5.8) can be written as646
This means that the total harvest cost per unit of user’s effort is equal to the discount value of the future price647

under the steady state effort level.648
(iii) From Eqs.(5.11) and (5.13), we can obtain649

.1 Notes650

The optimal solution of (5.5) forv = 0.867.651
This shows that the unlimited discount rate leads to the complete dissipation of the net economic income to652

the society, (u 1 q 1 N b + u 2 q 2 Z b -C)E = 0. We also observe that for a zero discount rate, the present value653
of the continuous time flow reaches its maximum.654

Due to the complexity of its calculation and to explain our optimal tax policy more intuitively, we continue655
to study it through numerical simulation. If656

and the discounting factor ? = 0.045 in appropriate units, based on the selection of the above parameter657
values, we can get the optimal tax is v = 0.867. In Fig. ??, we get the optimal solution. Therefore, we have658
used the principle of Pontryagin’s maximum to obtain the optimal path of the optimal tax policy, which not only659
ensures the maximum goal of the regulatory authority, but also the stability of the ecosystem.660

In this section, we will use Matlab to numerically simulate the impact of various parameters on species and661
the stability of steady state. Therefore, the initial conditions and parameter settings in Table ?? are used for the662
numerical analysis of the system (2.3). First, we give the time series diagram of N , T and Z with short period663
and long period, then the impact of different ?, q 1 E and q 2 E on the survival of species were investigated.664
Lastly, we study the changes in equilibrium stability with varying delays of time.665

.2 Notes666

The behavior of the system(2.2) for ? 1 = 0.9,? 2 = 1.06 with other parameters chosen in (6.1).667
The behavior of the system(2.2) for ? 1 = 0.9,? 2 = 1.09 with other parameters chosen in (6.1).668
The predator avoidance effect always attracts ecologists to investigate it. In the aquatic system, zooplankton669

lives in the environment full of toxic and non-toxic bait (phytoplankton). To make toxic phytoplankton, nontoxic670
phytoplankton and zooplankton coexist, the avoidance behavior of zooplankton against toxic phytoplankton671
is an important research topic. In this paper, we consider a biological model with two delays in which672
zooplankton avoids poisonous phytoplankton in the presence of nontoxic phytoplankton. For this model of673
poisonous avoidance, due to the avoidance coefficient of zooplankton to toxic phytoplankton, the growth density674
of zooplankton and toxic phytoplankton is nonlinear. When the poisonous avoidance coefficient is high, the675
density of poisonous phytoplankton will increase in proportion, and finally tend to be stable. we also consider676
the impact of human harvest on the coexistence of these three species, the form of avoidance and human harvest677
have biological significance, which we also analyzed.678

According to this article, we analyze the positive and boundedness of the system solution without time delay679
at first. In the bounded area, the densities of nontoxic phytoplankton (NTP), toxic phytoplankton (TPP) and680
zooplankton (zooplankton) are all non negative. Then we analyze the bistability of the equilibrium points. From681
fig. ??, we can see the bistability of each equilibrium point in different k 1 ranges. For the dynamic behavior682
of double time-delay systems, we analyze the local stability and the existence of Hopf bifurcation. Taking the683
pregnancy delay ? 1 and the toxin onset delay ? 2 as the bifurcation parameters, the critical value of the time684
delay for the Hopf bifurcation of the system under different conditions is obtained. We find that the system is685
stable when the time delay is less than this critical value(? 0 1 , ? 0 2 , ? * 10 and ? * 20 , respectively), but686
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