

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS AND SPACE SCIENCE
Volume 23 Issue 11 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Evaluating the Reliability and Safety of Lithium-Ion Batteries in Electric Vehicles: Advancements, Challenges, and Environmental Considerations

By Sriyash Tantia

Introduction- Background: The global transportation sector is facing increasing challenges related to air pollution, greenhouse gas emissions, and climate change. As a result, there is a growing need to shift towards cleaner and more sustainable modes of transportation. Electric vehicles (EVs) have gained significant attention as a promising solution to reduce emissions and dependence on fossil fuels.

Central to the operation of EVs are lithium-ion batteries, which provide the necessary energy storage capacity for electric propulsion. Lithium-ion batteries have emerged as a leading technology in the field of energy storage due to their high energy density, low self-discharge rate, and versatile design options. However, ensuring the reliability and safety of these batteries remains a critical aspect for the widespread adoption of EVs. Figure 1 explain the Electric Vehicle architecture in details.

GJSFR-A Classification: LCC: TK1-9971

Strictly as per the compliance and regulations of:

Evaluating the Reliability and Safety of Lithium-Ion Batteries in Electric Vehicles: Advancements, Challenges, and Environmental Considerations

Sriyash Tantia

I. INTRODUCTION

a) Background

The global transportation sector is facing increasing challenges related to air pollution, greenhouse gas emissions, and climate change. As a result, there is a growing need to shift towards cleaner and more sustainable modes of transportation. Electric vehicles (EVs) have gained significant attention as a promising solution to reduce emissions and dependence on fossil fuels.

Central to the operation of EVs are lithium-ion batteries, which provide the necessary energy storage capacity for electric propulsion. Lithium-ion batteries have emerged as a leading technology in the field of energy storage due to their high energy density, low self-discharge rate, and versatile design options. However, ensuring the reliability and safety of these batteries remains a critical aspect for the widespread adoption of EVs. Figure 1 explain the Electric Vehicle architecture in details. This report aims to assess the reliability and safety of lithium-ion batteries in electric vehicles, taking into account the progress made in the field, the challenges that still need to be addressed, and the environmental implications associated with battery production, usage, and disposal. By thoroughly examining these aspects, the thesis seeks to contribute to the understanding of the current state of lithium-ion battery technology and provide insights into the measures needed to enhance their reliability, safety, and overall sustainability.

Through a comprehensive analysis of battery degradation, thermal management techniques, failure mechanisms, and the need for standardization and regulation, this research will identify the key issues and obstacles that must be overcome to ensure the safe and reliable operation of lithium-ion batteries in electric vehicles. Furthermore, the environmental implications of lithium-ion batteries, including their material extraction, manufacturing processes, and end-of-life management, will be evaluated to gain a holistic understanding of their overall sustainability.

By addressing these crucial aspects, this research endeavors to contribute to the advancement of reliable and safe lithium-ion battery technology, paving the way for the wider adoption of electric vehicles as a sustainable mobility solution. Ultimately, this transition to cleaner transportation options can significantly mitigate environmental impacts, improve air quality, and create a more sustainable and resilient transportation system for future generations

b) Research Objectives

- Assess the current state of reliability and safety of lithium-ion batteries used in electric vehicles.
- Identify the key challenges and obstacles in ensuring the reliability and safety of lithium-ion batteries in electric vehicles.
- Evaluate advancements in battery management systems, materials, and designs to enhance the reliability and safety of lithium-ion batteries.
- Investigate the failure mechanisms of lithium-ion batteries in electric vehicles and their impact on reliability and safety.
- Analyze the environmental implications of lithium-ion batteries, including their production, usage, and disposal, in order to identify strategies for minimizing their environmental impact.

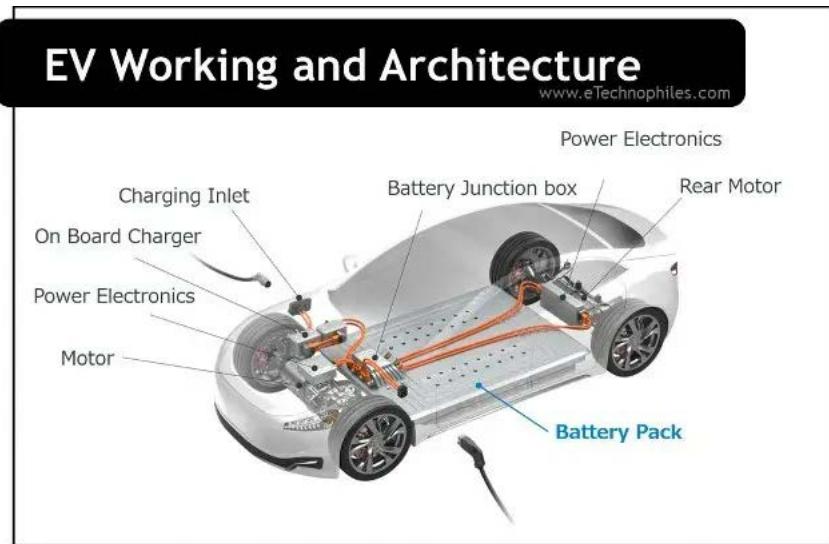


Figure 1: Electric Vehicle architecture

II. LITHIUM-ION BATTERIES IN ELECTRIC VEHICLES

a) Overview of Lithium-Ion Batteries

Lithium-ion batteries are rechargeable energy storage devices widely used in electric vehicles (EVs) due to their high energy density, lightweight design, and long cycle life. These batteries operate based on the movement of lithium ions between two electrodes, namely the cathode and the anode, through an electrolyte. The cathode is typically composed of lithium metal oxides, such as lithium cobalt oxide (LiCoO_2), lithium nickel manganese cobalt oxide (LiNiMnCoO_2), or lithium iron phosphate (LiFePO_4). The anode, on the other hand, is commonly made of graphite or other carbon-based materials.

b) Importance of Lithium-Ion Batteries in Electric Vehicles

Lithium-ion batteries play a critical role in the successful deployment of electric vehicles. As the primary energy storage system, they provide the necessary power for the vehicle's propulsion, enabling emission-free and efficient transportation. The importance of lithium-ion batteries in EVs stems from their ability to deliver high energy density, which allows for longer driving ranges and shorter charging times compared to alternative battery technologies. Moreover, lithium-ion batteries offer a higher specific energy (energy stored per unit mass) and energy efficiency, contributing to improved overall vehicle performance.

c) Types of Lithium-Ion Batteries Used in EVs

There are several types of lithium-ion batteries utilized in electric vehicles, each with distinct characteristics and chemistries. Common types include:

i. Lithium Iron Phosphate (LiFePO_4) Batteries

- Known for their enhanced safety and thermal stability.
- Suitable for applications requiring high current ratings and long cycle life.
- Often used in commercial electric vehicles and hybrid electric vehicles.

ii. Lithium Nickel Manganese Cobalt Oxide (NMC) Batteries

- Offers a balance between energy density, power capability, and longevity.
- Widely adopted in mainstream electric vehicle models due to their favorable performance characteristics.
- Provide a good compromise between high specific energy and specific power.

iii. Lithium Nickel Cobalt Aluminum Oxide (NCA) Batteries

- Known for their high specific energy and power density.
- Commonly used in electric vehicles that prioritize energy density and longer driving ranges.
- Often found in premium electric vehicle models.

d) Comparison of Different Lithium-Ion Battery Chemistries

When comparing the different lithium-ion battery chemistries used in electric vehicles, several factors come into play, including energy density, power capability, cycle life, safety, and cost. Lithium-ion batteries with higher energy densities offer longer driving ranges, while those with higher power capabilities enable quicker acceleration and regenerative braking. Additionally, cycle life reflects the battery's lifespan before significant capacity degradation occurs, while

safety considerations involve resistance to thermal runaway and the risk of thermal events. Lastly, cost plays a crucial role in the commercial viability of electric vehicles.

By understanding the various lithium-ion battery chemistries and their characteristics, manufacturers and researchers can tailor battery systems to specific vehicle requirements and optimize performance, reliability, and safety. This knowledge aids in the advancement of electric vehicle technology and the ongoing development of more efficient and sustainable transportation solutions.

III. FAILURE MECHANISMS OF LITHIUM-ION BATTERIES

a) Chemical Failure Mechanisms

Chemical failure mechanisms in lithium-ion batteries can result from various processes, including

Table 1: Chemical Failure Mechanisms in Lithium-Ion Batteries

Chemical Failure Mechanism	Description	Impact
Electrolyte Decomposition	Breakdown of the electrolyte due to high voltage, elevated temperatures, or prolonged cycling	Formation of gas, capacity loss, increased internal resistance
Active Material Dissolution	Dissolution of active materials from the electrodes into the electrolyte, resulting in capacity fade	Reduced electrode performance, increased impedance
Loss of Lithium	Irreversible loss of lithium ions from the electrodes, leading to reduced capacity and irreversible performance degradation	Capacity loss, decreased overall battery performance
Solid-Electrolyte Interphase (SEI) Formation	Formation of a passivation layer on the electrode surface, affecting ion transport and leading to capacity degradation	Increased impedance, reduced cycling stability

b) Thermal Failure Mechanisms

Thermal failure mechanisms in lithium-ion batteries can result in severe safety risks, including thermal runaway, fire, or explosion. These mechanisms often arise due to internal short circuits, external abuse

electrolyte decomposition, active material dissolution, and loss of lithium. These mechanisms can lead to capacity loss, decreased battery performance, and potentially hazardous conditions. Understanding and mitigating these chemical failure modes are crucial for enhancing the reliability and safety of lithium-ion batteries in electric vehicles. Figure 2. explain the various condition of failure of batteries in EVs.

Table 2: Thermal Failure Mechanisms in Lithium-Ion Batteries

Thermal Failure Mechanism	Description	Impact
Internal Short Circuit	Unintentional electrical connection between the positive and negative electrodes within the battery	Heat generation, temperature rise, potential thermal runaway
External Abuse Conditions	Exposure to high temperatures, physical stress, or improper handling	Risk of thermal runaway, fire, or explosion
Inadequate Thermal Management	Insufficient cooling or heating systems to maintain optimal temperature range	Capacity loss, power failure, reduced battery performance, potential safety hazards

c) Impact of Design, Integration, Manufacturing, and Handling on Failure

Design, integration, manufacturing, and handling practices significantly influence the failure mechanisms and overall reliability of lithium-ion

conditions, or inadequate thermal management systems. Understanding and effectively managing thermal failure modes are crucial to ensure the safety and reliability of lithium-ion batteries in electric vehicles.

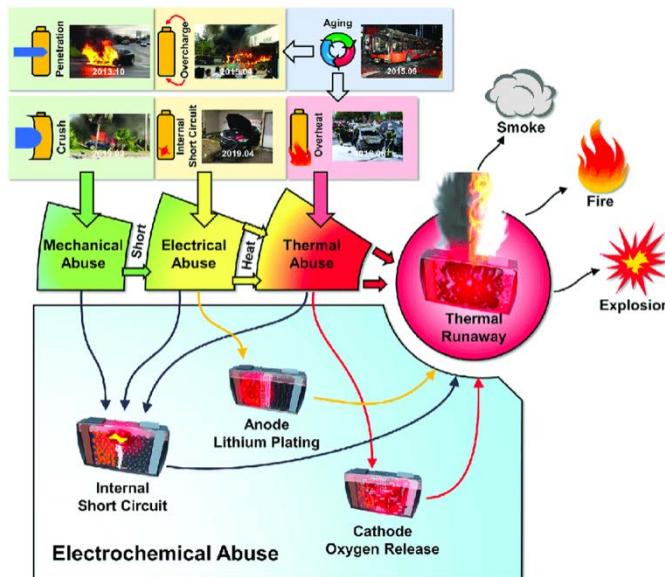

batteries. Proper attention to these aspects is necessary to minimize risks and ensure the safe and reliable operation of batteries in electric vehicles.

Table 3: Impact of Design, Integration, Manufacturing, and Handling on Battery Failure

Aspect	Description	Impact
Design	Considerations such as electrode structure, separator choice, and cell packaging	Performance, cycle life, and safety of the battery
Integration	Proper assembly and connections within the battery pack and vehicle	Overall pack performance, risk of short circuits or thermal events
Manufacturing	Quality control, process optimization, and consistent production	Uniform battery performance, reduced variability, minimized defects
Handling	Proper transportation, storage, maintenance procedures	Prevention of physical damage, reduction of safety risks, prolonged battery lifespan

By understanding the chemical and thermal failure mechanisms, as well as the impact of design, integration, manufacturing, and handling, manufacturers, researchers, and policymakers can implement strategies to enhance the reliability and safety of lithium-ion batteries in electric vehicles. This

knowledge can guide the development of robust battery systems, effective thermal management strategies, and standardized manufacturing and handling practices, ultimately ensuring the successful and widespread adoption of electric vehicles.

Figure 2: Various conditions of failure of batteries

IV. BATTERY THERMAL MANAGEMENT SYSTEMS

a) Importance of Battery Thermal Management

Battery thermal management is a crucial aspect of ensuring the reliability and safety of lithium-ion batteries in electric vehicles. Lithium-ion batteries are sensitive to temperature variations, and operating outside the optimal temperature range can significantly impact their performance, cycle life, and safety. Proper thermal management systems help regulate the temperature of the battery pack, maintaining it within the recommended range and mitigating the adverse effects of extreme temperatures.

b) Optimal Temperature Range for Lithium-Ion Batteries

Lithium-ion batteries exhibit optimal performance within a specific temperature range. While the exact range may vary depending on the battery

chemistry and design, it is generally recommended to operate lithium-ion batteries within a temperature range of approximately 20°C to 45°C (68°F to 113°F). Operating within this range ensures efficient battery performance, minimizes capacity loss, and reduces the risk of thermal events.

c) Impact of High and Low Temperatures on Battery Performance and Safety

Extreme temperatures, both high and low, can have detrimental effects on battery performance and safety. Operating at high temperatures accelerates degradation processes within the battery, leading to capacity loss, reduced cycle life, and increased internal resistance. It can also increase the risk of thermal runaway, causing a rapid and uncontrollable increase in temperature, potentially leading to fire or explosion. On

the other hand, low temperatures can increase the battery's internal resistance, limiting its power output

and reducing its available capacity. Figure 3 shows the impact of temperature on the performance of batteries.

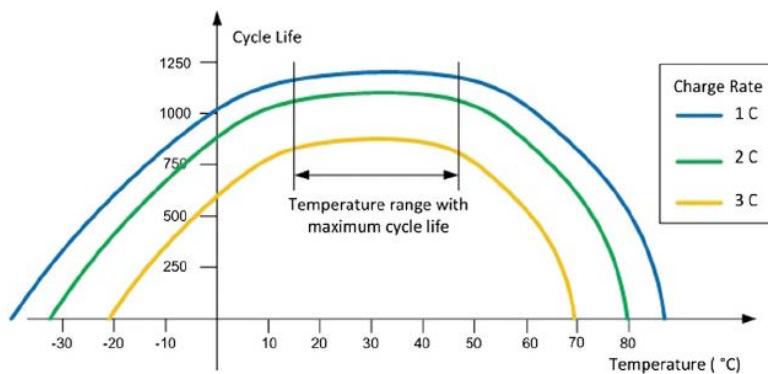


Figure 3: Impact of Temperature on Lithium-Ion Battery Performance.

The figure above illustrates the relationship between temperature and key battery performance parameters, such as capacity, power output, and efficiency. It demonstrates the decline in battery performance as temperatures deviate from the optimal range.

d) Role of Battery Thermal Management Systems in Reliability and Safety

Battery thermal management systems play a vital role in maintaining the temperature of lithium-ion

battery packs within the optimal range. These systems typically incorporate cooling and/or heating mechanisms to regulate the battery temperature during various operating conditions. They help dissipate excess heat generated during charging or discharging, preventing thermal runaway and ensuring safe battery operation. Additionally, thermal management systems help maintain a uniform temperature distribution across the battery pack, avoiding hotspots that can accelerate degradation and compromise battery performance.

Table 1: Key Components of Battery Thermal Management Systems

Component	Description
Cooling System	Heat exchange mechanisms, such as liquid cooling or air cooling, to dissipate excess heat from the battery
Heating System	Provision of controlled heating during cold temperatures to maintain battery performance
Thermal Sensors	Temperature sensors strategically placed to monitor the battery's temperature and provide feedback for temperature regulation
Control System	Intelligent control algorithms to monitor and adjust the cooling or heating systems based on the battery's temperature and other operating parameters

The integration of effective battery thermal management systems in electric vehicles ensures optimal battery performance, prolongs battery life, and enhances overall safety. By maintaining the battery temperature within the recommended range, these systems contribute to the reliable and sustainable operation of lithium-ion batteries in electric vehicles.

V. SOLUTIONS FOR ENHANCING LITHIUM-ION BATTERY RELIABILITY AND SAFETY

Lithium-ion battery reliability and safety are critical factors for the widespread adoption of electric vehicles. To address the challenges and improve the performance of these batteries, several solutions have been developed. This section explores key strategies, including advanced battery management systems,

materials and design advancements, integrated safety features, and recycling and end-of-life considerations.

a) Advanced Battery Management Systems

Advanced battery management systems (BMS) play a crucial role in monitoring and controlling critical parameters of lithium-ion batteries. They enhance battery reliability and safety by actively managing charging and discharging processes, monitoring cell voltages and temperatures, and implementing appropriate safety measures. BMS also provide important diagnostic information, allowing early detection of potential failures and enabling preventive actions. These systems contribute to optimal battery performance, prolong cycle life, and mitigate safety risks.

Table 1: Key Features of Advanced Battery Management Systems

Battery Management System Features	Description
State of Charge (SOC) Estimation	Accurate estimation of the remaining capacity in the battery
State of Health (SOH) Monitoring	Continuous monitoring of the battery's health and degradation over time
Thermal Management Control	Regulation of battery temperature to ensure optimal operating conditions
Voltage and Current Monitoring	Real-time monitoring of cell voltages and currents to detect anomalies
Cell Balancing	Equalization of charge/discharge levels among cells to maintain uniform performance
Safety Shutdown Mechanisms	Activation of safety protocols in case of abnormal operating conditions
Communication Interface	Exchange of information between the battery system and external devices

b) Materials and Design Advancements

Materials and design advancements play a crucial role in enhancing the reliability and safety of lithium-ion batteries. Improvements in electrode materials, such as the development of new cathode and anode materials with higher energy density and improved stability, can significantly enhance battery performance and longevity. Additionally, advancements in cell design, including novel architectures and improved electrolyte formulations, contribute to better thermal management, reduced internal resistance, and improved cycling stability.

c) Integrated Safety Features

Integrated safety features within lithium-ion batteries further enhance reliability and safety. These features include mechanisms such as shutdown separators, thermal shutdown devices, and pressure relief valves. Shutdown separators, for instance, inhibit the flow of ions and prevent thermal runaway during abnormal conditions. Thermal shutdown devices detect excessive temperatures and trigger safety measures to prevent overheating. Pressure relief valves release built-up pressure in case of battery abuse or failure, mitigating the risk of explosion.

Table 2: Integrated Safety Features in Lithium-Ion Batteries

Integrated Safety Features	Description
Shutdown Separators	Separator materials that inhibit ion flow and prevent thermal runaway
Thermal Shutdown Devices	Sensors and circuitry that detect excessive temperatures and initiate safety measures
Pressure Relief Valves	Mechanisms that release built-up pressure to prevent explosion
Flame Retardant Materials	Materials incorporated into battery components to reduce flammability

d) Recycling and End-of-Life Considerations

Recycling and proper end-of-life management of lithium-ion batteries are essential for sustainability and environmental protection. Recycling processes aim to recover valuable materials from spent batteries, such as lithium, cobalt, nickel, and other metals. These materials can be reused in the production of new batteries, reducing the demand for raw materials and minimizing environmental impact. Additionally, safe and efficient disposal methods ensure that batteries do not end up in landfills, preventing potential contamination and harmful effects on ecosystems.

Incorporating these solutions and strategies into the design, manufacturing, and usage of lithium-ion batteries for electric vehicles contributes to their enhanced reliability, safety, and sustainability. Advanced battery management systems, materials and design advancements, integrated safety features, and recycling

practices are key enablers for the continued development and adoption of electric vehicles as a cleaner and more sustainable transportation option.

VI. ENVIRONMENTAL IMPLICATIONS

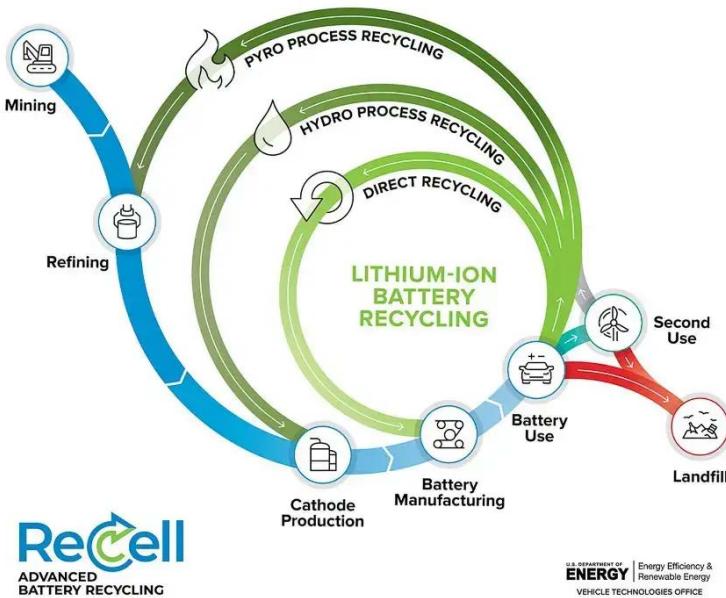
The environmental implications of lithium-ion batteries used in electric vehicles (EVs) are crucial considerations for ensuring the sustainability of transportation. This section explores the environmental aspects related to lithium-ion batteries, including their role in sustainable transportation, recycling and resource recovery, and measures to minimize their environmental impacts.

a) Sustainable Transportation and Lithium-Ion Batteries

Lithium-ion batteries play a significant role in enabling sustainable transportation through the electrification of vehicles. EVs powered by lithium-ion

batteries offer several environmental benefits compared to conventional internal combustion engine vehicles. These benefits include reduced greenhouse gas emissions, improved air quality, and decreased reliance on fossil fuels. By transitioning to electric vehicles, societies can mitigate the adverse environmental impacts associated with conventional vehicles, such as air pollution and climate change.

b) Recycling and Resource Recovery


The recycling and resource recovery of lithium-ion batteries are critical for minimizing their

environmental footprint and reducing the demand for raw materials. Recycling processes aim to recover valuable materials from spent batteries, including lithium, cobalt, nickel, and other metals. These materials can be reused in the production of new batteries, reducing the reliance on mining and the associated environmental and social impacts. Additionally, recycling reduces the environmental risks associated with improper disposal and prevents the release of hazardous substances into the environment.

Table 1: Environmental Benefits of Recycling Lithium-Ion Batteries

Environmental Benefits	Description
Resource Conservation	Recovery of valuable materials reduces the need for new resource extraction
Reduced Greenhouse Gas Emissions	Decreased energy consumption and emissions associated with primary production
Waste Minimization	Diverting spent batteries from landfills and preventing potential environmental contamination
Energy Savings	Lower energy requirements in recycling compared to primary production

LITHIUM-ION BATTERY LIFECYCLE

Figure 4: Lithium-Ion Battery Recycling Process

The figure 4 above illustrates the general process of lithium-ion battery recycling, which involves collection, dismantling, and separation of battery components, followed by material recovery and refining.

c) Minimizing Environmental Impacts of Lithium-Ion Batteries

To minimize the environmental impacts of lithium-ion batteries throughout their lifecycle, several measures can be implemented. These measures include:

Sustainable Battery Manufacturing: Promoting sustainable manufacturing practices that reduce energy consumption, waste generation, and emissions during battery production.

Design for Environment: Incorporating eco-design principles in battery development to optimize resource efficiency, recyclability, and ease of disassembly.

Life Cycle Assessment: Conducting life cycle assessments to evaluate the environmental impacts of batteries from raw material extraction to disposal and identifying hotspots for improvement.

Responsible Disposal: Establishing proper collection, disposal, and recycling systems to ensure spent batteries are handled and disposed of safely, minimizing environmental and health risks.

Implementing these measures requires collaboration among stakeholders, including battery manufacturers, policymakers, recycling facilities, and consumers. By adopting a holistic approach to minimize the environmental impacts of lithium-ion batteries, the transition to electric vehicles can contribute to a more sustainable and environmentally responsible transportation system.

In conclusion, the environmental implications of lithium-ion batteries in electric vehicles are of utmost importance for achieving sustainable transportation. By considering sustainable manufacturing, promoting recycling and resource recovery, and implementing measures to minimize environmental impacts, the lifecycle of lithium-ion batteries can be managed in an environmentally responsible manner. These efforts contribute to the reduction of greenhouse gas emissions, resource conservation, and the creation of a more sustainable and resilient transportation system for the future.

VII. CHALLENGES AND FUTURE DIRECTIONS

a) Current Challenges in Lithium-Ion Battery Reliability and Safety

Despite the significant advancements in lithium-ion battery technology, several challenges still exist in ensuring their reliability and safety in electric vehicles. Some of the current challenges include:

Battery Degradation: Lithium-ion batteries experience degradation over time, leading to capacity loss and reduced performance. Understanding and mitigating degradation mechanisms are essential for prolonging battery life and maintaining optimal performance.

Thermal Management: Efficient thermal management is critical to prevent excessive temperature rise and maintain the battery within the optimal temperature range. Achieving effective cooling and heating strategies is vital to mitigate thermal-related failures and ensure safe battery operation.

Safety and Failure Mechanisms: Lithium-ion batteries can be prone to safety issues such as thermal runaway, short circuits, and electrolyte decomposition. Identifying and understanding failure mechanisms and developing robust safety measures are essential to prevent catastrophic events and ensure safe battery operation.

Standardization and Regulation: The absence of comprehensive standards and regulations specific to lithium-ion batteries in electric vehicles poses challenges for ensuring consistent quality, safety, and performance. Developing and implementing standardized testing protocols and safety regulations can enhance reliability and facilitate widespread adoption.

b) Future Directions and Emerging Technologies

The future of lithium-ion battery technology in electric vehicles holds great promise. Researchers and industry stakeholders are actively working on addressing the current challenges and exploring emerging technologies. Some of the future directions and emerging technologies include:

Advanced Materials: Continued research and development of advanced electrode materials, such as silicon anodes, solid-state electrolytes, and new cathode chemistries, to enhance energy density, cycle life, and safety.

Battery Pack Design: Innovative battery pack designs, including flexible and modular configurations, can optimize space utilization, improve thermal management, and enhance overall reliability and safety.

Artificial Intelligence and Machine Learning: Integration of artificial intelligence and machine learning algorithms in battery management systems can enable real-time monitoring, predictive modeling, and adaptive control strategies, optimizing battery performance and safety.

Solid-State Batteries: Solid-state batteries, which replace liquid electrolytes with solid-state electrolytes, hold promise for improved safety, energy density, and cycle life. Ongoing research aims to overcome technical challenges and scale up production for commercial use.

Recycling and Circular Economy: Advancements in battery recycling technologies and the establishment of a circular economy approach can ensure efficient resource recovery, reduce environmental impacts, and minimize reliance on raw material extraction.

By addressing the current challenges and embracing emerging technologies, the reliability and safety of lithium-ion batteries in electric vehicles can be significantly enhanced. Continued research, collaboration among industry, academia, and policymakers, and the development of robust standards and regulations are key to advancing the future of

lithium-ion battery technology and ensuring the continued growth and sustainability of electric vehicles.

VIII. CONCLUSION

In conclusion, the report highlights various aspects related to the reliability, safety, and environmental implications of lithium-ion batteries in electric vehicles. Here are the key points summarized:

- Lithium-ion batteries are crucial for enabling sustainable transportation by reducing greenhouse gas emissions, improving air quality, and decreasing reliance on fossil fuels.
- Advanced battery management systems play a critical role in monitoring and controlling battery parameters, ensuring optimal performance and enhancing safety.
- Materials and design advancements, such as improved electrode materials and innovative cell architectures, contribute to enhanced reliability, safety, and performance of lithium-ion batteries.
- Integrated safety features, including shutdown separators, thermal shutdown devices, and pressure relief valves, help mitigate safety risks and prevent thermal runaway or explosions.
- Recycling and resource recovery are essential for minimizing the environmental impacts of lithium-ion batteries. Proper recycling processes enable the recovery of valuable materials and reduce the demand for raw material extraction.

- Effective battery thermal management systems maintain batteries within the optimal temperature range, preventing degradation, capacity loss, and safety hazards.
- Standardization and regulation are necessary to ensure consistent quality, safety, and performance of lithium-ion batteries, fostering their widespread adoption and confidence in electric vehicle technology.
- Future directions and emerging technologies, such as advanced materials, innovative battery pack designs, artificial intelligence integration, solid-state batteries, and circular economy approaches, hold promise for further enhancing the reliability, safety, and sustainability of lithium-ion batteries.
- Continued research, collaboration, and the development of robust standards and regulations are crucial for advancing lithium-ion battery technology and ensuring the success of electric vehicles as a sustainable transportation solution.
- By addressing the current challenges, embracing emerging technologies, and implementing sustainable practices throughout the lifecycle of lithium-ion batteries, we can pave the way for a cleaner, greener, and more reliable transportation system that minimizes environmental impacts and contributes to a sustainable future.

REFERENCES RÉFÉRENCES REFERENCIAS

Study material that was referred to write this report

Title	Author(s)	Publisher	Publication Year
Lithium-Ion Batteries: Science and Technologies	Gianfranco Pistoia	Elsevier	2018
Lithium Batteries: Advanced Technologies and Applications	Edited by Bruno Scrosati and Jürgen Garche	Wiley	2013
Lithium-Ion Batteries: Solid-Electrolyte Interphase	Jürgen O. Besenhard, Jean-Marie Tarascon, Martin Winter	Springer	2004
Battery Management Systems for Large Lithium-Ion Battery Packs	Davide Andrea	Artech House	2010
Battery Systems Engineering	Christopher D. Rahn, Luke A. Schoen	Wiley	2013
Battery Technology for Electric Vehicles: Public Science and Private Innovation	Gianfranco Pistoia and Shmuel De-Leon	Elsevier	2014
Lithium-Ion Batteries: Fundamentals and Applications	Masaki Yoshio, Ralph J. Brodd, AkiyaKozawa	Wiley	2009
Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications	Gregory L. Plett	Artech House	2015
Battery Technology Handbook	H.A. Kiehne, A. Thaler	CRC Press	2003
Lithium-Ion Batteries: Advances and Applications	Edited by Gianfranco Pistoia and Walter van Schalkwijk	Wiley	2014

