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Abstract-

 

Understanding the intricate dynamics of ocean 
biogeochemistry is crucial for deciphering its role in climate 
change. Our study addresses this challenge by integrating 
advanced computational techniques and innovative sensor 
technology to enhance remote sensing capabilities. Drawing 
on recent insights into the vast carbon reservoirs within the 
ocean, particularly within the dissolved organic matter (DOM) 
pool, we highlight the pressing need for comprehensive spatial 
and temporal understanding facilitated by a

 

combination of 
satellite and in situ data. However, existing remote sensing 
methods face limitations in capturing subsurface processes, 
hindering our ability to grasp carbon fluxes within the oceanic 
water column fully. Recent advancements in remote sensing 
offer promising avenues for addressing these challenges. 
Studies investigating polarized radiance distribution and 
Chromophoric Dissolved Organic Matter (CDOM) provide 
valuable insights into improving remote sensing capabilities. 
Building upon these advancements, we propose a novel data-
driven approach utilizing HyperOCR sensors and non-negative 
matrix factorization (NMF). Non-negative matrix factorization 
(NMF) is a powerful tool for extracting meaningful biological 
signatures from hyperspectral data, offering a granular yet 
comprehensive view of spectral diversity. Our study 
showcases the potential of NMF in elucidating spatial and 
temporal variations in biogeochemical processes within the 
ocean. Leveraging HyperOCR sensors, our approach offers a 
cost-effective and efficient means of enhancing remote 
sensing capabilities, enabling the rapid deployment and 
identification of seasonal patterns in the water column. 
Through extensive validation against field data from the 
Adriatic Sea, we demonstrate the utility of our approach in 
refining satellite measurements and improving algorithms for 
analyzing ocean color data. Our findings underscore the 
importance of integrating multiple observational platforms and 
advanced computational techniques to enhance the accuracy 
and reliability of remote sensing in ocean biogeochemistry 
studies. In conclusion, our study contributes to a deeper 
understanding of marine ecosystems' responses to 
environmental changes and offers a new perspective on 
remote sensing capabilities, particularly in challenging coastal 
waters. By bridging the gap between satellite and in situ 
measurements, our approach exemplifies a promising 

pathway for advancing remote sensing of ocean 
biogeochemistry. 

I. Introduction 

o understand the role of the ocean in climate 
change, it is important to interpret the 
biogeochemical fate of carbon in the ocean 

correctly. It has only recently become clear that the vast 
majority of the ocean carbon (662 Pg C) is found within 
the dissolved organic matter (DOM) pool, most of it in 
the reduced, refractory form [1]. Yet many questions 
about its role in climate feedback remain open, primarily 
regarding its potential remineralization by microbes or 
photo-oxidation (photoproduction of CO2)[2]. To fully 
understand it, spatially and temporarily, on a global 
scale, we need a combination of remotely obtained 
(satellite) and measured in situ relevant data through the 
entire water column [3]. 

Currently, the main needs cluster around 
developing and enhancing satellite radiation products to 
better support various research and operational 
applications related to ocean biology and 
biogeochemistry [4]. The ongoing challenges focus 
primarily on understanding complex oceanic processes 
and the increasing demand for precise and reliable data 
to inform environmental policy and management 
strategies, particularly in the face of climate change. The 
requirements include additional satellite-derived 
products such as sub-surface planar and scalar 
irradiance, average cosine, spectral fluxes (from UV to 
visible), diurnal fluxes, absorbed fraction of PAR by live 
algae (APAR), surface albedo, vertical attenuation, and 
heating rate. These products would provide more 
detailed and comprehensive data for studying marine 
ecosystems and their responses to environmental 
changes [5]. 

Despite the tremendous effort undertaken, we 
still lack information about subsurface processes 
governing carbon fluxes within the oceanic water 
column. The main problem remains that subsurface 
processes can only be detected remotely if they have a 
surface signature. With that in mind, various research 
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approaches have been attempted to understand better 
and interpret satellite remote sensing capabilities. 

Gleason et al. [6] detailed the measurement 
and modeling of the polarized upwelling radiance 
distribution in clear and coastal waters. The study 
successfully modeled and measured the Degree of 
Linear Polarization (DOLP) of the upwelling light field 
using a Monte Carlo-based radiative transfer code and 
fish-eye cameras equipped with linear polarizing filters. 
Field experiments in varying water conditions showed 
the model could predict the DOLP with an absolute error 
of ±0.05. This accuracy was achieved even with a fixed 
scattering Mueller matrix, which required precise in situ 
measurements of other optical properties [6]. The 
findings underscore the sensitivity of satellite sensors to 
polarization and the potential of using polarized 
radiance measurements for determining particle 
characteristics in oceanic waters [7,8]. The findings 
have significant implications for satellite remote sensing 
of the ocean floor by enhancing the accuracy and 
reliability of remote sensing data. Furthermore, Aurin et 
al. [9] demonstrate significant advancements in remote 
sensing of Chromophoric Dissolved Organic Matter 
(CDOM), CDOM spectral slope, and Dissolved Organic 
Carbon (DOC) in the global ocean. A comprehensive 
Global Ocean Carbon Algorithm Database (GOCAD) 
was developed using data from over 500 oceanographic 
field campaigns spanning three decades. This database 
incorporates a vast range of in situ reflectances, satellite 
imagery, and multispectral CDOM absorption 
coefficients, which facilitated the development, 
optimization, and validation of various semi-analytical, 
empirical, and machine learning algorithms for retrieving 
global DOC, CDOM, and CDOM slope. These 
algorithms have been optimized for global retrieval and 
exhibit a strong correlation with seasonal patterns of 
phytoplankton biomass and terrestrial runoff, 
highlighting their sensitivity and utility in understanding 
large-scale oceanic and atmospheric phenomena, such 
as the El Niño Southern Oscillation. Further validation of 
these algorithms, particularly in mid-ocean gyres and 
the Southern Oceans, is suggested to refine their 
application and increase accuracy. To address this 
problem, significant insights from a field 
intercomparison of radiometer measurements in the 
northern Adriatic Sea have been conducted to validate 
ocean color remote sensing data [10]. The study 
assessed the accuracy of in-water and above-water 
radiometer systems using multiple measurement 
systems under stable conditions. The results indicated 
generally good agreement among sensors for 
measuring downwelling irradiance, sky radiance, and 
above-water upwelling radiance, with differences 
typically less than 6% across visible wavelengths. The 
study further demonstrated the importance of accurate 
sensor calibration and highlighted the variability 
introduced by different measurement setups and 

environmental conditions. These findings are crucial for 
refining remote sensing methodologies, enhancing the 
reliability of ocean color data from satellite observations, 
and constraining the differences between in-water and 
satellite ocean color products. A similar study was 
conducted with the same goal, e.g. [11]. 

To tackle the disadvantages of remote sensing, 
comprehensive insights into the accuracy and 
challenges of in situ Ocean Color Radiometry (OCR) 
have been provided for the Southern Atlantic and 
Southeastern Pacific [12]. The research identified 
significant variability in remote sensing reflectance 
measurements obtained using different techniques, with 
relative percent differences ranging from 12% to 26% for 
ocean-color bands. This variability underscores the 
difficulties in obtaining precise in situ OCR 
measurements, particularly in regions with complex 
water properties and variable environmental conditions. 
The study also highlighted the critical impact of these 
uncertainties on the retrieval of chlorophyll 
concentrations and inherent optical properties using 
operational bio-optical algorithms. These findings have 
important implications for satellite remote sensing, 
particularly in calibrating and validating satellite sensors 
and improving bio-optical models for interpreting 
satellite data. The research emphasizes the need for 
refined measurement techniques and algorithms to 
enhance the accuracy of satellite-derived ocean color 
data, which is crucial for understanding global 
biogeochemical cycles and assessing climate change 
impacts on marine ecosystems. Finally, the advent of 
cutting-edge technology has paved the way for 
advancements in artificial intelligence and sensor 
systems. As these sensors become increasingly 
affordable, they are becoming more accessible to a 
wider range of applications. One such application is the 
aforementioned radiance in water columns, a task 
traditionally performed using satellite imagery. However, 
satellite data collection is fraught with challenges, 
including cloud cover, resolution limitations, orbit speed, 
and a lack of precision. Moreover, satellites fail to 
provide information about the entire water column, 
leaving a significant gap in our understanding.  

To address these issues, we propose a data-
driven approach that leverages HyperOCR sensors and 
artificial intelligence, specifically non-negative matrix 
factorization (NMF) (Figure 1A), as an alternative to 
previous approaches. NMF is a dimensionality reduction 
and data representation method that decomposes a 
given non-negative matrix into two lower-dimensional 
matrices, where all elements are constrained to be non-
negative, enabling intuitive and interpretable parts-
based representations of the original data [13](Figure 
1B). NMF has been employed across various scientific 
fields and has demonstrated significant results in 
numerous studies [14–18]. Moreover, in recent studies 
on understanding the ocean's carbon cycle, NMF-
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extracted signatures have shown an association 
between the abundance of microorganisms, providing 
further evidence of its potential utility [19]. Our approach 
is cost-effective and quick to deploy, offering a 
promising alternative to current methods revealing 
seasonal patterns in the water column (Figure 1C). 

II. Methods 
a) Data Collection 

We employed a custom-built profiler for our 
data collection, incorporating four sensors and a 
custom-built data logger (water-column profiler). Within 
this system, three sensors and a data logger were 
integrated into the profiler frame, while the fourth was 
positioned vertically on the vessel. Among the custom-
built sensor system, two Hyperspectral Ocean Color 
Radiometers (Seabird HOCR) were deployed to capture 
both upwelling (UW) and downwelling (DW) irradiance. 
This arrangement facilitated irradiance measurement 
from both the upward and downward directions. 
Additionally, a Seabird SBE 39plus sensor was utilized 
to monitor pressure and temperature (Figure 1A). The 
fourth sensor, an Apogee PS-200 (Apogee Instruments, 
Inc., North Logan, UT, USA), served as a reference, 
capturing reference curves positioned atop the vessel. 
These sensors provided comprehensive data acquisition 
capabilities, enabling detailed monitoring and analysis 
throughout our study. 

b) Experiment Location and Sampling 
The experiment was conducted near the islands 

of Mljet (42⁰ 45′ 15″ N; 17⁰ 23′ 12″ E, depth 128 m) and 
Vis (43⁰ 03’ 32.8’’ N, 16⁰ 17’ 19.7’’ E, depth 102.9 m) in 
Croatia. As island of Mljet is moreaccessible, 
comparable to island of Vis, more data was collected at 
Mljet location. Moreover, the vessel used for conducting 
experiments is located at Mljet. All measurements were 
taken in the middle of the day, at the sun's culmination. 
The profiler's descending speed was 0.22 m/s. A total of 
22 profiles were analyzed, resulting in the collection of 
11,653 hyperspectral curves (Figure 2A). These 
measurements were conducted intermittently across 
May, June, July, August, and December to capture data 
potentially influenced by seasonal patterns (Figure 2B). 

c) Data Preprocessing And Normalization 
The data underwent preprocessing and 

normalization through the following steps. Each sensor 
has a different sampling rate, resulting in small 
mismatch in time stamp. In order to solve this, all sensor 
data were merged based on timestamps, allowing a 
tolerance of up to 2 seconds to accommodate variations 
in sampling rates among sensors. Next, the Apogee 
sensor served as a reference and was utilized for 
normalization purposes. The Apogee sensor measured 
direct radiance on the surface representing the 
maximum radiance at given time stamp. Next, 
hyperspectral curves from the upwelling (UW) and 

downwelling (DW) sensors were normalized by dividing 
them by the reference curve (Figure 1A). This 
normalization step resulted in range of numbers 
between 0 and 1, representing percentage of maximum 
radiance. Furthermore, the dataset was filtered to 
include only curves measured at a depth of 1 meter or 
greater, as sensors require time to auto-calibrate when 
submerged in the water column.  

d) Application of Non-Negative Matrix Factorization 
The Non-Negative Matrix Factorization (NMF) 

algorithm decomposes an input matrix into two non-
negative matrices, W and H, such that their product 
approximates the input matrix (Supplementary Figure 1). 
The matrix W represents the basis or dictionary 
elements, often interpreted as unique patterns or 
features present in the data, such as hyperspectral 
ocean color radiometer (h-OCR) curves, which we refer 
to as “signatures”. The matrix H represents the 
coefficients or weights that determine the contribution of 
each basis element to reconstruct the original data 
curves. In our implementation of the NMF algorithm, we 
utilized the 'nndsvdar' initialization method to compute 
the initial state of the factorization. This initialization 
approach is based on the Non-negative Double Singular 
Value Decomposition with Alternating Rectification 
(NNDSVDar) method, which initializes the factor 
matrices with small random values, allowing for faster 
convergence. The NMF solver employed multiplicative 
updates iteratively to optimize the factor matrices while 
minimizing the Frobenius norm as the loss function. We 
set the maximum number of iterations for the NMF 
algorithm to 1000 to ensure convergence to a 
satisfactory solution. This comprehensive approach 
enabled us to effectively decompose the input matrix 
into meaningful basis patterns and their corresponding 
coefficients, facilitating the extraction of interpretable 
features from the data. 

e) Code Availability 
The code for analysis and plotting is accessible 

via the public GitHub repository at https://github.com/ 
mxs3203/svjetloPaper. The repository contains code for 
the NMF model, HOCR data processing, and figure 
generation, which are included in the manuscript. 
Additionally, the data matrices are available for 
download as Supplementary Material. 

f) Computational Requirements 
Computational modeling was performed using 

a standard desktop computer with average 
performance. As the modeling process did not utilize a 
GPU and did not require extensive computational 
resources, a regular computer sufficed for our purposes. 
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III. Results 

a) Temperature Measurements Show Patterns of Water 
Column Stratification 

The temperature-depth profile depicted in 
Figure 2B illustrates temperature distribution across the 
water column during sampling intervals (Supplementary 
Figure 2). Results indicate gradual stratification of the 
water column from May to August. In December, the 
water column was vertically homogeneous with a 
temperature of 16oC as a consequence of wind Bora 
mixing. Measurements conducted on the 19th of May 
2023 (Figure 2B, Supplementary Figure 3) show an 
inflow of Ionian Surface Water (ISW) via the Otranto 
Strait to the depth of 95m, which is characteristic for 
autumn [20]. However, circulation in the Adriatic Sea 
exhibits high spatial and temporal variability, with a 
general cyclonic circulation pattern [21]. The mixing of 
different water masses significantly affects the 
hyperspectral data in the sea column, revealing unique 
optical signatures. 

b) Fitting the NMF Model to Hyperspectral Data 

In this study, we employed Non-Negative Matrix 
Factorization (NMF) to uncover underlying patterns 
within the normalized hyper-OCR curves dataset. The 
NMF algorithm decomposes the input data matrix into 
two non-negative matrices: a basis matrix (or signature 
matrix) and a coefficient matrix (Supplementary Figure 
1). The basis matrix represents distinct signatures or 
patterns inherent in the data, while the coefficient matrix 
indicates the contribution of each signature to the 
original samples. Through the training process, our NMF 
model generated a set of signatures, each represented 
as a unique hyperspectral curve, encapsulating unique 
patterns within the dataset. This method is robust 
enough to not be affected by temperature variations and 
their effect on hyperspectral patterns, but it captures 
unique patterns in the data. These signatures serve as 
interpretable representations of the underlying structure 
of the data. To determine the optimal number of 
signatures (k) for our model, we employed the “elbow 
method”, a common approach for selecting the 
appropriate number of clusters or components in 
unsupervised learning tasks. Our analysis revealed that 
k=5 emerged as the optimal number of signatures 
(Figure 3A). Beyond this value, the reconstruction error 
did not exhibit substantial changes, suggesting that 
additional signatures did not capture significantly more 
variance in the data. Thus, we proceeded with k=5 to 
extract the most salient patterns from the hyper-OCR 
curves dataset. NMF analysis yielded five distinct 
signatures (S1 to S5), each representing unique spectral 
patterns within the dataset (Figure 3B). Signature 1 (S1) 
is characterized by a high-intensity peak centered 
around 440nm. Signature 2 (S2) exhibits a high-intensity 

peak starting at 350 nm and rapidly decreasing towards 
450nm, with an additional small peak between 500 nm 

and 600 nm, reaching its highest intensity at 580 nm. 
Signature 3 (S3) presents a broad spectral curve with 
medium intensity spanning from 500 nm to 700 nm, with 
its peak intensity observed at approximately 585 nm. 
Signature 4 (S4) is defined by a medium-intensity peak 
around 460nm and shows a small enrichment in the 
spectral range of 800 nm to 850nm. Finally, Signature 5 
(S5) displays a medium-intensity peak resembling a 
bimodal function, with peaks at 495 nm and 520nm 
(Figure 3B).  

c) Comparing UW and DW Sensor Signatures Across 
Months 

We divided the signatures obtained from the 
upwelling (UW) and downwelling (DW) sensors for 
separate analyses. The UW sensor exhibited the lowest 
values in signatures S1, S3, and S5, while the DW 
sensors demonstrated the highest values in S1 and S4 
(Figure 4A-B). Upon examining the UW sensor 
signatures from May to December, we observed a 
gradual increase in S2, S3, and S4, with peaks occurring 
in July and August before returning to lower values in 
December. Notably, S1 started with the highest values in 
May and gradually decreased towards December. 
Additionally, S5 showed minor enrichment in the UW 
sensor, with small peaks observed in May and 
December (Figure 4A). The downwelling (DW) sensor 
generally exhibited the highest enrichment values in S1, 
with peaks observed in May and August. S2 
demonstrated comparable values in May and June, 
gradually increasing towards August and December. S3 
exhibited the highest values in December and May, 
displaying a U-shaped pattern with a minimum 
observed in July and August. High enrichment in S4 was 
consistently observed in the DW sensor, peaking in 
June, July, and August. Lastly, S5 displayed 
comparable enrichment levels in May, June, and July, 
with a noticeable increase observed in August and 
December (Figure 4B). 

d) Exploring Depth and Monthly Variations in Sensor 
Signatures 

In this analysis, we categorized depth 
measurements into bins spanning intervals of 10 meters 
each, starting from 0 to 10 meters and extending 
onwards in increments of 10 meters. Our objective was 
to identify any trends in signature enrichment across 
different depths and months. In the upwelling (UW) 
sensor data, we observed consistent patterns across 
most months for signature S1, except in May, where it 
exhibited the highest average enrichment (Figure 4C, 
Supplementary Figure 4). However, this enrichment 
decreased as depth increased. For S2, similar patterns 
were noted in July and August, with noticeable 
differences between depths of 50 meters and 90 meters, 
where July showed higher enrichment (Figure 4C). 
Notably, S2 did not exhibit the same rapid decrease with 
depth in July and August as observed in other months 
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as signature enrichment stayed stable. Conversely, S3 
and S5 displayed minimal enrichment and exhibited 
minor variations across the study months. Nonetheless, 
it is noteworthy that S5 displayed the highest enrichment 
in December within depths of 0 to 10 meters, gradually 
decreasing with increasing depth. In S4, comparable 
patterns were observed in July and August, while May, 
June, and December displayed distinct decreasing 
patterns. December exhibited the steepest decrease in 
S4 enrichment. In the downwelling (DW) sensor data, 
distinct patterns emerged, particularly in the downward 
trend of signature enrichment with increasing depth, 
observed across all signatures except S4 (Figure 4D, 
Supplementary Figure 4). S1 exhibited a consistent 
downward trend in enrichment across all months except 
for December, when the downward pattern was a bit 
steeper. S3 displayed comparable trends in December-
May and July-August, with June standing out as having 
a distinct pattern. The pattern observed in S4 is 
particularly interesting, where enrichment initially began 
with values close to zero near the surface, except for 
December. Subsequently, the enrichment of S4 
gradually increased, peaking between 30 and 40 meters 
depth before declining as depth increased(Figure 4D). 
S5 demonstrated an almost linear downward pattern, 
starting with the highest enrichment near the surface 
and gradually decreasing with depth, with notable 
differences observed in December and August. In 
December, S5 exhibited higher values around 10 and 20 
meters than the average values at 0 to 10 meters. 

e) Daily Patterns Of Sensor Enrichment 
To assess daily patterns, we categorized 

sampling time into three distinct periods. "Morning" was 
defined as the time frame between 6:00 AM and 11:00 
AM, "Noon" encompassed the period from 11:00 AM to 
5:00 PM, and "Dusk" extended from 5:00 PM to 9:00 PM. 
These categories were employed to group sensor 
enrichment data and calculate the average enrichment 
of signatures across each designated time period for 
both sensors. In the UW sensor data, signatures S1, S3, 
and S5 exhibited minimal changes across the three 
defined time frames and months. However, S2 
displayed distinct patterns, particularly in August, 
indicating that enrichment was highest in the morning 
and lowest at dusk. In May, S2 showed an upward 
pattern, with increased values observed at dusk. 
Notably, in July, S2 displayed the lowest values at noon 
but experienced a drastic increase in signature 
enrichment at dusk. Similarly, S4 demonstrated similar 
patterns in July, with the highest enrichment observed at 
dusk. In June, S4 exhibited identical enrichment levels in 
the morning and noon but showed zero enrichment at 
dusk, while December showed the highest enrichment 
of S4 at noon (Figure 5A). In the DW sensor data, 
distinct patterns emerged, with notable differences 
observed between the months and time frames used for 

analysis. S1 exhibited the highest enrichment at dusk in 
May and July, while S2 showed the highest enrichment 
in the morning in August and July. Interestingly, S2 in 
July also displayed the highest enrichment at dusk. S3 
did not demonstrate any significant patterns or major 
changes across months or time frames. On the other 
hand, S4 exhibited the highest and similar enrichment 
levels in the morning and noon in June, July, and 
August, with differences observed at dusk. In July, S4 
maintained high enrichment levels at dusk, whereas in 
June and July, enrichment levels diminished to almost 
zero. Additionally, S4 displayed notable results for 
December, with the highest enrichment observed at 
noon. Similarly, S5 also showed the highest average 
enrichment at noon in December. August and June 
exhibited similar patterns, with the highest enrichment 
observed in the morning, gradually decreasing towards 
dusk (Figure 5B). 

IV. Discussion 

Our study utilized a custom-built sensor system 
to collect comprehensive data, resulting in a dataset 
comprising 11,653 hyperspectral curves paired with 
temperature and depth measurements. While 
conducting the sampling and comparing the data 
afterward, we observed differences in the quality of 
measurements during specific time frames and depth 
ranges. Particularly, measurements taken in the late 
afternoon, approximately 1-2 hours before dusk, 
exhibited a notable amount of noise. Additionally, we 
observed the influence of wave activity on the quality of 
measurements, particularly in the surface layer. Waves 
induced significant noise in the measurements due to 
light scatter, resulting in inconsistencies and 
inaccuracies (Supplementary Figure 5). However, we 
found that as depth increased, typically between 10-20 
meters, the influence of wave-induced noise decreased, 
leading to more stable and reliable measurements. Both 
problems were addressed at the data filtering step, 
where noisy data was removed. The temperature data 
revealed intriguing patterns, particularly observed on the 
19th of May, 2023, wherein a homogeneous 
temperature distribution was observed with decreasing 
depth. This event relates to the inflow of Ionian Surface 
Water (ISW) via the Otranto Strait to a depth of 95m, 
which is normally characteristic of autumn [20]. 

Employing a Non-Negative Matrix Factorization 
(NMF) model on the entire dataset yielded five distinct 
signatures. These signatures were instrumental in 
characterizing both seasonal and daily patterns within 
our data. The differentiation in spectral signatures 
between upwelling (UW) and downwelling (DW) 
sensors, especially their distinct seasonal dynamics, 
can be partially explained by the variations in 
phytoplankton community composition and its 
biogeochemical implications. For instance, the highest 
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enrichment in signature S1 during the peak of light 
upwelling values and its gradual decrease could be 
indicative of phytoplankton dynamics where certain taxa 
like diatoms dominate due to nutrient influxes, 
consistent with findings that growth conditions can 
decouple diatom populations from grazing pressure, 
leading to significant bloom events [22]. This hypothesis 
is supported by our observation of spectral signature 
shifts that coincide with known nutrient dynamics and 
light conditions, which are critical drivers of 
phytoplankton community structure [22,23]. 
Interestingly, the variation in signatures across different 
depths and months, particularly the observed depth-
wise attenuation of signature enrichment in DW sensor 
data, underscores the stratification effects on light 
availability and nutrient distribution, aligning with 
observations that certain cyanobacteria and smaller 
phytoplankton are adapted to low-nutrient, high-light 
conditions in stratified waters [24]. The consistent 
patterns seen in certain signatures during specific 
months could also reflect the physiological adaptations 
of phytoplankton to seasonal light variations, potentially 
impacting their backscattering properties as suggested 
by the taxonomic variability in particle backscattering 
(BBP)-to-phytoplankton carbon (Cphyto) scaling [25]. 
Moreover, our findings add a nuanced layer to 
understanding phytoplankton dynamics by linking 
spectral data with ecological patterns. For example, the 
enrichment peaks in signatures from the UW sensor 
during early summer might indicate rapid growth phases 
or succession events within the phytoplankton 
community, which are critical for predicting carbon 
export potential during these periods. This aligns with 
the discourse on the impact of community composition 
on carbon cycling and the necessity of considering 
taxonomic variability in modeling biogeochemical cycles 
[22,26]. Future work should focus on integrating these 
spectral signatures with direct taxonomic identification 
and physiological state assessments to validate the 
inferred patterns and enhance the predictive power of 
hyperspectral analyses in marine ecosystems. 
Additionally, adopting newer, absorption-based 
methods for estimating phytoplankton biomass and 
carbon content could refine the interpretation of spectral 
data, especially in relation to community composition 
changes and their biogeochemical roles [27]. Our study 
underscores the variability and complexity of 
phytoplankton dynamics in marine ecosystems and 
highlights the potential of sophisticated analytical 
techniques like NMF in unraveling these complexities. 
By advancing our understanding of how different 
phytoplankton communities contribute to and are 
influenced by environmental factors, we can better 
predict and manage the impacts of global changes on 
marine ecosystems. As global oceanic and atmospheric 
conditions continue to evolve, significant shifts in 
phytoplankton community structure are anticipated, 

particularly with respect to picophytoplankton and 
cyanobacteria. These groups, characterized by their 
small size and adaptability, are poised to dominate 
increasingly stratified and oligotrophic waters driven by 
rising sea surface temperatures and reduced nutrient 
inputs from deep waters [23,28]. Cyanobacteria, in 
particular, are known for their efficiency in low-nutrient 
environments and could outcompete larger 
phytoplankton taxa under such conditions, potentially 
leading to a higher prevalence of cyanobacteria in future 
marine ecosystems [29]. This shift could have profound 
implications for marine food webs and biogeochemical 
cycles, as cyanobacteria and other picophytoplankton 
typically have different nutritional contents, sinking rates, 
and interactions with higher trophic levels compared to 
larger phytoplankton like diatoms. Moreover, the 
increase in cyanobacteria may also influence the 
biogeochemical properties of marine environments, 
such as nitrogen fixation rates and carbon sequestration 
capabilities. Predictive models need to account for 
these changes to accurately forecast the impacts of 
climate change on marine ecosystems, particularly the 
potential feedback mechanisms involving 
picophytoplankton that could alter oceanic carbon 
cycling dynamics and nutrient fluxes significantly. We 
believe that our approach to studying light in the water 
column, as presented in this study, could significantly 
add to a better understanding of these changes. 
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Figure 1: Study overview. A) Data collection process: Vessel equipped with sensor system was collecting data which 
consisted of H-OCR curves (UW and DW), temperature, pressure and reference curve(used for normalization). 
Finally the data was matched by the timestamp in order to have total dataset. B) NMF application: Normalized H-
OCR curves were used in NMF with focus on extraction of unique patterns in data. C) Signature characterization: 
After signatures were disccovered by the NMF method, they were used in multiple downstream analyses
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Figure 4:

 

Signature characterization.

 

A) Barplot indicating signature enrichment for UW sensors for each month. B) 
Bar plot indicating signature enrichment for DW sensor for each month. C) Line plot indicating average enrichment 
of signatures from UW sensor for specific depth bin and month. D) Line plot indicating average enrichment of 
signatures from DW sensor for specific depth bin and month
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Figure 5:

 

Signature enrichment by time intervals

 

A) Line plot indicating how enrichment of signatures in UW sensor, 
changes during the time of day and month. B) Line plot indicating how enrichment of signatures in DW sensor, 
changes during the time of day and month

 

  

Morning

UW Sensor DW Sensor

Noon Dusk
Time of the day

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Si
gn

at
ur

e 
En

ri
ch

m
en

t Signature
S1
S2
S3
S4
S5

May
June
July
August
December

Morning Noon Dusk
Time of the day

0.00

0.01

0.02

0.03

0.04

S i
gn

at
ur

e 
En

ri
ch

m
en

t

A B

G
lo
ba

l 
Jo

ur
na

l 
of
 S

ci
en

ce
 F

ro
nt
ie
r 
R
es
ea

rc
h 

( 
E 

) 
X
X
IV

 I
ss
ue

 I
 V

er
si
on

 I
 

 Y
ea

r 
20

24

26

© 2024 Global Journals

Advancing Oceanic Studies with Hyper OCR Sensors and Non-Negative Matrix Factorization: A Cost-
Effective, Data-Driven Approach for Analyzing Light in Marine Water Column



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Su
pp

le
m

en
ta

ry
 F

ig
ur

e 
1:

Vi
sa

liz
at

io
n 

of
 N

M
F 

fa
ct

or
iz

at
io

n 
pr

oc
es

s 
fo

r u
si

ng
 o

ur
 d

at
a

In
p

u
t

D
at

a
W

H

H
-O

C
R

cu
rv

e
1

H
-O

C
R

cu
rv

e
2

H
-O

C
R

cu
rv

e
N

n
m

S
1

S
2

S
3

S
4

S
5

X

G
lo
ba

l 
Jo

ur
na

l 
of
 S

ci
en

ce
 F

ro
nt
ie
r 
R
es
ea

rc
h 

( 
E 

) 
X
X
IV

 I
ss
ue

 I
 V

er
si
on

 I
 

 Y
ea

r 
20

24

27

© 2024 Global Journals

Advancing Oceanic Studies with Hyper OCR Sensors and Non-Negative Matrix Factorization: A Cost-
Effective, Data-Driven Approach for Analyzing Light in Marine Water Column



Supplementary Figure 2:

 

Distribution of temperature measurements for each month

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0 6.0 7.0 8.0 12.0
Month

16

18

20

22

24

26

28
Se

a 
co

lu
m

n 
te

m
pe

ra
tu

re
Month

5.0
6.0
7.0
8.0
12.0

G
lo
ba

l 
Jo

ur
na

l 
of
 S

ci
en

ce
 F

ro
nt
ie
r 
R
es
ea

rc
h 

( 
E 

) 
X
X
IV

 I
ss
ue

 I
 V

er
si
on

 I
 

 Y
ea

r 
20

24

28

© 2024 Global Journals

Advancing Oceanic Studies with Hyper OCR Sensors and Non-Negative Matrix Factorization: A Cost-
Effective, Data-Driven Approach for Analyzing Light in Marine Water Column



Supplementary Figure 3:

 

Line plot showing temperature distribution across water column (depth)
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Supplementary Figure 4: Barplots showing average enrichment of signatures per sensor, month and depth-bin
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