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Advancing Oceanic Studies with Hyper OCR
Sensors and Non-Negative Matrix Factorization:
A Cost-Effective, Data-Driven Approach for
Analyzing Light in Marine Water Column

Mateo Sokac « & Stasa Puskaricé o

Abstract- Understanding the intricate dynamics of ocean
biogeochemistry is crucial for deciphering its role in climate
change. Our study addresses this challenge by integrating
advanced computational techniques and innovative sensor
technology to enhance remote sensing capabilities. Drawing
on recent insights into the vast carbon reservoirs within the
ocean, particularly within the dissolved organic matter (DOM)
pool, we highlight the pressing need for comprehensive spatial
and temporal understanding facilitated by a combination of
satellite and in situ data. However, existing remote sensing
methods face limitations in capturing subsurface processes,
hindering our ability to grasp carbon fluxes within the oceanic
water column fully. Recent advancements in remote sensing
offer promising avenues for addressing these challenges.
Studies investigating polarized radiance distribution and
Chromophoric Dissolved Organic Matter (CDOM) provide
valuable insights into improving remote sensing capabilities.
Building upon these advancements, we propose a novel data-
driven approach utilizing HyperOCR sensors and non-negative
matrix factorization (NMF). Non-negative matrix factorization
(NMF) is a powerful tool for extracting meaningful biological
signatures from hyperspectral data, offering a granular yet
comprehensive view of spectral diversity. Our study
showcases the potential of NMF in elucidating spatial and
temporal variations in biogeochemical processes within the
ocean. Leveraging HyperOCR sensors, our approach offers a
cost-effective and efficient means of enhancing remote
sensing capabilities, enabling the rapid deployment and
identification of seasonal patterns in the water column.
Through extensive validation against field data from the
Adriatic Sea, we demonstrate the utility of our approach in
refining satellite measurements and improving algorithms for
analyzing ocean color data. Our findings underscore the
importance of integrating multiple observational platforms and
advanced computational techniques to enhance the accuracy
and reliability of remote sensing in ocean biogeochemistry
studies. In conclusion, our study contributes to a deeper
understanding of marine ecosystems' responses to
environmental changes and offers a new perspective on
remote sensing capabilities, particularly in challenging coastal
waters. By bridging the gap between satellite and in situ
measurements, our approach exemplifies a promising

Author a: Department of Software Engineering, Algebra University
Gradis¢anska 24 10000 Zagreb, Croatia. e-mail: msokac@algebra.hr
Author o. RIT Croatia, Zagreb campus, Marinix Ocean Tech.

pathway for remote

biogeochemistry.

advancing sensing of ocean

[. INTRODUCTION

o understand the role of the ocean in climate
Tohange, it is important to interpret the

biogeochemical fate of carbon in the ocean
correctly. It has only recently become clear that the vast
majority of the ocean carbon (662 Pg C) is found within
the dissolved organic matter (DOM) pool, most of it in
the reduced, refractory form [1]. Yet many questions
about its role in climate feedback remain open, primarily
regarding its potential remineralization by microbes or
photo-oxidation (photoproduction of CO,)[2]. To fully
understand it, spatially and temporarily, on a global
scale, we need a combination of remotely obtained
(satellite) and measured in situ relevant data through the
entire water column [3].

Currently, the main needs cluster around
developing and enhancing satellite radiation products to
better support various research and operational
applications  related to ocean biology and
biogeochemistry [4]. The ongoing challenges focus
primarily on understanding complex oceanic processes
and the increasing demand for precise and reliable data
to inform environmental policy and management
strategies, particularly in the face of climate change. The
requirements  include additional  satellite-derived
products such as sub-surface planar and scalar
iradiance, average cosine, spectral fluxes (from UV to
visible), diurnal fluxes, absorbed fraction of PAR by live
algae (APAR), surface albedo, vertical attenuation, and
heating rate. These products would provide more
detailed and comprehensive data for studying marine
ecosystems and their responses to environmental
changes [5].

Despite the tremendous effort undertaken, we
still lack information about subsurface processes
governing carbon fluxes within the oceanic water
column. The main problem remains that subsurface
processes can only be detected remotely if they have a
surface signature. With that in mind, various research
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approaches have been attempted to understand better
and interpret satellite remote sensing capabilities.
Gleason et al. [6] detailed the measurement
and modeling of the polarized upwelling radiance
distribution in clear and coastal waters. The study
successfully modeled and measured the Degree of
Linear Polarization (DOLP) of the upwelling light field
using a Monte Carlo-based radiative transfer code and
fish-eye cameras equipped with linear polarizing filters.
Field experiments in varying water conditions showed
the model could predict the DOLP with an absolute error
of =0.05. This accuracy was achieved even with a fixed
scattering Mueller matrix, which required precise in situ
measurements of other optical properties [6]. The
findings underscore the sensitivity of satellite sensors to
polarization and the potential of using polarized
radiance measurements for determining particle
characteristics in oceanic waters [7,8]. The findings
have significant implications for satellite remote sensing
of the ocean floor by enhancing the accuracy and
reliability of remote sensing data. Furthermore, Aurin et
al. [9] demonstrate significant advancements in remote
sensing of Chromophoric Dissolved Organic Matter
(CDOM), CDOM spectral slope, and Dissolved Organic
Carbon (DOC) in the global ocean. A comprehensive
Global Ocean Carbon Algorithm Database (GOCAD)
was developed using data from over 500 oceanographic
field campaigns spanning three decades. This database
incorporates a vast range of in situ reflectances, satellite
imagery, and multispectral CDOM  absorption
coefficients, which facilitated the development,
optimization, and validation of various semi-analytical,
empirical, and machine leamning algorithms for retrieving
global DOC, CDOM, and CDOM slope. These
algorithms have been optimized for global retrieval and
exhibit a strong correlation with seasonal patterns of
phytoplankton  biomass and terrestrial  runoff,
highlighting their sensitivity and utility in understanding
large-scale oceanic and atmospheric phenomena, such
as the EI Nifio Southern Oscillation. Further validation of
these algorithms, particularly in mid-ocean gyres and
the Southern Oceans, is suggested to refine their
application and increase accuracy. To address this
problem, significant  insights from a  field
intercomparison of radiometer measurements in the
northern Adriatic Sea have been conducted to validate
ocean color remote sensing data [10]. The study
assessed the accuracy of in-water and above-water
radiometer systems using multiple measurement
systems under stable conditions. The results indicated
generally good agreement among sensors for
measuring downwelling irradiance, sky radiance, and
above-water upwelling radiance, with differences
typically less than 6% across visible wavelengths. The
study further demonstrated the importance of accurate
sensor calibration and highlighted the variability
introduced by different measurement setups and

© 2024 Global Journals

environmental conditions. These findings are crucial for
refining remote sensing methodologies, enhancing the
reliability of ocean color data from satellite observations,
and constraining the differences between in-water and
satellite ocean color products. A similar study was
conducted with the same goal, e.g. [11].

To tackle the disadvantages of remote sensing,
comprehensive insights into the accuracy and
challenges of in situ Ocean Color Radiometry (OCR)
have been provided for the Southern Atlantic and
Southeastern Pacific [12]. The research identified
significant variability in remote sensing reflectance
measurements obtained using different techniques, with
relative percent differences ranging from 12% to 26% for
ocean-color bands. This variability underscores the
difficulties in  obtaining precise in situ OCR
measurements, particularly in regions with complex
water properties and variable environmental conditions.
The study also highlighted the critical impact of these
uncertainties on the retrieval of  chlorophyll
concentrations and inherent optical properties using
operational bio-optical algorithms. These findings have
important implications for satellite remote sensing,
particularly in calibrating and validating satellite sensors
and improving bio-optical models for interpreting
satellite data. The research emphasizes the need for
refined measurement techniques and algorithms to
enhance the accuracy of satellite-derived ocean color
data, which is crucial for understanding global
biogeochemical cycles and assessing climate change
impacts on marine ecosystems. Finally, the advent of
cutting-edge technology has paved the way for
advancements in artificial intelligence and sensor
systems. As these sensors become increasingly
affordable, they are becoming more accessible to a
wider range of applications. One such application is the
aforementioned radiance in water columns, a task
traditionally performed using satellite imagery. However,
satellite data collection is fraught with challenges,
including cloud cover, resolution limitations, orbit speed,
and a lack of precision. Moreover, satellites fail to
provide information about the entire water column,
leaving a significant gap in our understanding.

To address these issues, we propose a data-
driven approach that leverages HyperOCR sensors and
artificial intelligence, specifically non-negative matrix
factorization (NMF) (Figure 1A), as an alternative to
previous approaches. NMF is a dimensionality reduction
and data representation method that decomposes a
given non-negative matrix into two lower-dimensional
matrices, where all elements are constrained to be non-
negative, enabling intuitive and interpretable parts-
based representations of the original data [13](Figure
1B). NMF has been employed across various scientific
fields and has demonstrated significant results in
numerous studies [14-18]. Moreover, in recent studies
on understanding the ocean's carbon cycle, NMF-
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extracted signatures have shown an association
between the abundance of microorganisms, providing
further evidence of its potential utility [19]. Our approach
is cost-effective and quick to deploy, offering a
promising alternative to current methods revealing
seasonal patterns in the water column (Figure 1C).

[I. METHODS

a) Data Collection

We employed a custom-built profiler for our
data collection, incorporating four sensors and a
custom-built data logger (water-column profiler). Within
this system, three sensors and a data logger were
integrated into the profiler frame, while the fourth was
positioned vertically on the vessel. Among the custom-
built sensor system, two Hyperspectral Ocean Color
Radiometers (Seabird HOCR) were deployed to capture
both upwelling (UW) and downwelling (DW) irradiance.
This arrangement facilitated irradiance measurement
from both the upward and downward directions.
Additionally, a Seabird SBE 39plus sensor was utilized
to monitor pressure and temperature (Figure 1A). The
fourth sensor, an Apogee PS-200 (Apogee Instruments,
Inc., North Logan, UT, USA), served as a reference,
capturing reference curves positioned atop the vessel.
These sensors provided comprehensive data acquisition
capabilities, enabling detailed monitoring and analysis
throughout our study.

b) Experiment Location and Sampling

The experiment was conducted near the islands
of Mljet (42° 45" 15" N; 17° 23' 12" E, depth 128 m) and
Vis (43° 03’ 32.8" N, 16° 17" 19.7" E, depth 102.9 m) in
Croatia. As island of Mljet is moreaccessible,
comparable to island of Vis, more data was collected at
Miljet location. Moreover, the vessel used for conducting
experiments is located at Mljet. All measurements were
taken in the middle of the day, at the sun's culmination.
The profiler's descending speed was 0.22 m/s. A total of
22 profiles were analyzed, resulting in the collection of
11,653 hyperspectral curves (Figure 2A). These
measurements were conducted intermittently across
May, June, July, August, and December to capture data
potentially influenced by seasonal patterns (Figure 2B).

c) Data Preprocessing And Normalization

The data underwent preprocessing and
normalization through the following steps. Each sensor
has a different sampling rate, resulting in small
mismatch in time stamp. In order to solve this, all sensor
data were merged based on timestamps, allowing a
tolerance of up to 2 seconds to accommodate variations
in sampling rates among sensors. Next, the Apogee
sensor served as a reference and was utilized for
normalization purposes. The Apogee sensor measured
direct radiance on the surface representing the
maximum radiance at given time stamp. Next,
hyperspectral curves from the upwelling (UW) and

downwelling (DW) sensors were normalized by dividing
them by the reference curve (Figure 1A). This
normalization step resulted in range of numbers
between 0 and 1, representing percentage of maximum
radiance. Furthermore, the dataset was filtered to
include only curves measured at a depth of 1 meter or
greater, as sensors require time to auto-calibrate when
submerged in the water column.

d) Application of Non-Negative Matrix Factorization

The Non-Negative Matrix Factorization (NMF)
algorithm decomposes an input matrix into two non-
negative matrices, W and H, such that their product
approximates the input matrix (Supplementary Figure 1).
The matrix W represents the basis or dictionary
elements, often interpreted as unique patterns or
features present in the data, such as hyperspectral
ocean color radiometer (h-OCR) curves, which we refer
to as “signatures”. The matrix H represents the
coefficients or weights that determine the contribution of
each basis element to reconstruct the original data
curves. In our implementation of the NMF algorithm, we
utilized the 'nndsvdar' initialization method to compute
the initial state of the factorization. This initialization
approach is based on the Non-negative Double Singular
Value Decomposition with Alternating Rectification
(NNDSVDar) method, which initializes the factor
matrices with small random values, allowing for faster
convergence. The NMF solver employed multiplicative
updates iteratively to optimize the factor matrices while
minimizing the Frobenius norm as the loss function. We
set the maximum number of iterations for the NMF
algorithm to 1000 to ensure convergence to a
satisfactory solution. This comprehensive approach
enabled us to effectively decompose the input matrix
into meaningful basis patterns and their corresponding
coefficients, facilitating the extraction of interpretable
features from the data.

e) Code Availability

The code for analysis and plotting is accessible
via the public GitHub repository at https://github.com/
mxs3203/svjetloPaper. The repository contains code for
the NMF model, HOCR data processing, and figure
generation, which are included in the manuscript.
Additionally, the data matrices are available for
download as Supplementary Material.

) Computational Requirements

Computational modeling was performed using
a standard desktop computer with average
performance. As the modeling process did not utilize a
GPU and did not require extensive computational
resources, a regular computer sufficed for our purposes.
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I11. RESULTS

a) Temperature Measurements Show Patterns of Water
Column Stratification

The temperature-depth profile depicted in
Figure 2B illustrates temperature distribution across the
water column during sampling intervals (Supplementary
Figure 2). Results indicate gradual stratification of the
water column from May to August. In December, the
water column was vertically homogeneous with a
temperature of 16°C as a consequence of wind Bora
mixing. Measurements conducted on the 19th of May
2023 (Figure 2B, Supplementary Figure 3) show an
infow of lonian Surface Water (ISW) via the Otranto
Strait to the depth of 95m, which is characteristic for
autumn [20]. However, circulation in the Adriatic Sea
exhibits high spatial and temporal variability, with a
general cyclonic circulation pattern [21]. The mixing of
different water masses significantly affects the
hyperspectral data in the sea column, revealing unique
optical signatures.

b) Fitting the NMF Model to Hyperspectral Data

In this study, we employed Non-Negative Matrix
Factorization (NMF) to uncover underlying patterns
within the normalized hyper-OCR curves dataset. The
NMF algorithm decomposes the input data matrix into
two non-negative matrices: a basis matrix (or signature
matrix) and a coefficient matrix (Supplementary Figure
1). The basis matrix represents distinct signatures or
patterns inherent in the data, while the coefficient matrix
indicates the contribution of each signature to the
original samples. Through the training process, our NMF
model generated a set of signatures, each represented
as a unique hyperspectral curve, encapsulating unique
patterns within the dataset. This method is robust
enough to not be affected by temperature variations and
their effect on hyperspectral patterns, but it captures
unique patterns in the data. These signatures serve as
interpretable representations of the underlying structure
of the data. To determine the optimal number of
signatures (k) for our model, we employed the “elbow
method”, a common approach for selecting the
appropriate  number of clusters or components in
unsupervised learning tasks. Our analysis revealed that
k=5 emerged as the optimal number of signatures
(Figure 3A). Beyond this value, the reconstruction error
did not exhibit substantial changes, suggesting that
additional signatures did not capture significantly more
variance in the data. Thus, we proceeded with k=5 to
extract the most salient patterns from the hyper-OCR
curves dataset. NMF analysis yielded five distinct
signatures (S1 to S5), each representing unique spectral
patterns within the dataset (Figure 3B). Signature 1 (S1)
is characterized by a high-intensity peak centered
around 440nm. Signature 2 (S2) exhibits a high-intensity
peak starting at 350 nm and rapidly decreasing towards
450nm, with an additional small peak between 500 nm
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and 600 nm, reaching its highest intensity at 580 nm.
Signature 3 (S3) presents a broad spectral curve with
medium intensity spanning from 500 nm to 700 nm, with
its peak intensity observed at approximately 585 nm.
Signature 4 (S4) is defined by a medium-intensity peak
around 460nm and shows a small enrichment in the
spectral range of 800 nm to 850nm. Finally, Signature 5
(S5) displays a medium-intensity peak resembling a
bimodal function, with peaks at 495 nm and 520nm
(Figure 3B).

c) Comparing UW and DW Sensor Signatures Across
Months

We divided the signatures obtained from the
upwelling (UW) and downwelling (DW) sensors for
separate analyses. The UW sensor exhibited the lowest
values in signatures S1, S3, and S5, while the DW
sensors demonstrated the highest values in S1 and S4
(Figure 4A-B). Upon examining the UW sensor
signatures from May to December, we observed a
gradual increase in S2, S3, and S4, with peaks occurring
in July and August before returning to lower values in
December. Notably, S1 started with the highest values in
May and gradually decreased towards December.
Additionally, S5 showed minor enrichment in the UW
sensor, with small peaks observed in May and
December (Figure 4A). The downwelling (DW) sensor
generally exhibited the highest enrichment values in S1,
with  peaks observed in May and August. S2
demonstrated comparable values in May and June,
gradually increasing towards August and December. S3
exhibited the highest values in December and May,
displaying a U-shaped pattern with a minimum
observed in July and August. High enrichment in S4 was
consistently observed in the DW sensor, peaking in
June, July, and August. Lastly, S5 displayed
comparable enrichment levels in May, June, and July,
with a noticeable increase observed in August and
December (Figure 4B).

d) Exploring Depth and Monthly Variations in Sensor
Signatures

In this analysis, we categorized depth
measurements into bins spanning intervals of 10 meters
each, starting from 0 to 10 meters and extending
onwards in increments of 10 meters. Our objective was
to identify any trends in signature enrichment across
different depths and months. In the upwelling (UW)
sensor data, we observed consistent patterns across
most months for signature S1, except in May, where it
exhibited the highest average enrichment (Figure 4C,
Supplementary Figure 4). However, this enrichment
decreased as depth increased. For S2, similar patterns
were noted in July and August, with noticeable
differences between depths of 50 meters and 90 meters,
where July showed higher enrichment (Figure 4C).
Notably, S2 did not exhibit the same rapid decrease with
depth in July and August as observed in other months
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as signature enrichment stayed stable. Conversely, S3
and S5 displayed minimal enrichment and exhibited
minor variations across the study months. Nonetheless,
it is noteworthy that S5 displayed the highest enrichment
in December within depths of 0 to 10 meters, gradually
decreasing with increasing depth. In S4, comparable
patterns were observed in July and August, while May,
June, and December displayed distinct decreasing
patterns. December exhibited the steepest decrease in
S4 enrichment. In the downwelling (DW) sensor data,
distinct patterns emerged, particularly in the downward
trend of signature enrichment with increasing depth,
observed across all signatures except S4 (Figure 4D,
Supplementary Figure 4). S1 exhibited a consistent
downward trend in enrichment across all months except
for December, when the downward pattern was a bit
steeper. S3 displayed comparable trends in December-
May and July-August, with June standing out as having
a distinct pattern. The pattern observed in S4 is
particularly interesting, where enrichment initially began
with values close to zero near the surface, except for
December. Subsequently, the enrichment of S4
gradually increased, peaking between 30 and 40 meters
depth before declining as depth increased(Figure 4D).
S5 demonstrated an almost linear downward pattern,
starting with the highest enrichment near the surface
and gradually decreasing with depth, with notable
differences observed in December and August. In
December, S5 exhibited higher values around 10 and 20
meters than the average values at 0 to 10 meters.

e) Daily Patterns Of Sensor Enrichment

To assess daily patterns, we categorized
sampling time into three distinct periods. "Morning" was
defined as the time frame between 6:00 AM and 11:00
AM, "Noon" encompassed the period from 11:00 AM to
5:00 PM, and "Dusk" extended from 5:00 PM to 9:00 PM.
These categories were employed to group sensor
enrichment data and calculate the average enrichment
of signatures across each designated time period for
both sensors. In the UW sensor data, signatures S1, S3,
and S5 exhibited minimal changes across the three
defined time frames and months. However, S2
displayed distinct patterns, particularly in August,
indicating that enrichment was highest in the morning
and lowest at dusk. In May, S2 showed an upward
pattern, with increased values observed at dusk.
Notably, in July, S2 displayed the lowest values at noon
but experienced a drastic increase in signature
enrichment at dusk. Similarly, S4 demonstrated similar
patterns in July, with the highest enrichment observed at
dusk. In June, S4 exhibited identical enrichment levels in
the morning and noon but showed zero enrichment at
dusk, while December showed the highest enrichment
of S4 at noon (Figure 5A). In the DW sensor data,
distinct patterns emerged, with notable differences
observed between the months and time frames used for

analysis. S1 exhibited the highest enrichment at dusk in
May and July, while S2 showed the highest enrichment
in the morning in August and July. Interestingly, S2 in
July also displayed the highest enrichment at dusk. S3
did not demonstrate any significant patterns or major
changes across months or time frames. On the other
hand, S4 exhibited the highest and similar enrichment
levels in the morning and noon in June, July, and
August, with differences observed at dusk. In July, S4
maintained high enrichment levels at dusk, whereas in
June and July, enrichment levels diminished to almost
zero. Additionally, S4 displayed notable results for
December, with the highest enrichment observed at
noon. Similarly, S5 also showed the highest average
enrichment at noon in December. August and June
exhibited similar patterns, with the highest enrichment
observed in the morning, gradually decreasing towards
dusk (Figure 5B).

V. DISCUSSION

Our study utilized a custom-built sensor system
to collect comprehensive data, resulting in a dataset
comprising 11,653 hyperspectral curves paired with
temperature and depth  measurements.  While
conducting the sampling and comparing the data
afterward, we observed differences in the quality of
measurements during specific time frames and depth
ranges. Particularly, measurements taken in the late
afternoon, approximately 1-2 hours before dusk,
exhibited a notable amount of noise. Additionally, we
observed the influence of wave activity on the quality of
measurements, particularly in the surface layer. Waves
induced significant noise in the measurements due to
light scatter, resulting in inconsistencies and
inaccuracies (Supplementary Figure 5). However, we
found that as depth increased, typically between 10-20
meters, the influence of wave-induced noise decreased,
leading to more stable and reliable measurements. Both
problems were addressed at the data filtering step,
where noisy data was removed. The temperature data
revealed intriguing patterns, particularly observed on the
19th of May, 2023, wherein a homogeneous
temperature distribution was observed with decreasing
depth. This event relates to the inflow of lonian Surface
Water (ISW) via the Otranto Strait to a depth of 95m,
which is normally characteristic of autumn [20].

Employing a Non-Negative Matrix Factorization
(NMF) model on the entire dataset yielded five distinct
signatures. These signatures were instrumental in
characterizing both seasonal and daily patterns within
our data. The differentiation in spectral signatures
between upwelling (UW) and downwelling (DW)
sensors, especially their distinct seasonal dynamics,
can be partially explained by the variations in
phytoplankton ~ community composition and its
biogeochemical implications. For instance, the highest
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enrichment in signature S1 during the peak of light
upwelling values and its gradual decrease could be
indicative of phytoplankton dynamics where certain taxa
like diatoms dominate due to nutrient influxes,
consistent with findings that growth conditions can
decouple diatom populations from grazing pressure,
leading to significant bloom events [22]. This hypothesis
is supported by our observation of spectral signature
shifts that coincide with known nutrient dynamics and
light conditions, which are critical drivers of
phytoplankton community structure [22,23].
Interestingly, the variation in signatures across different
depths and months, particularly the observed depth-
wise attenuation of signature enrichment in DW sensor
data, underscores the stratification effects on light
availability and nutrient distribution, aligning with
observations that certain cyanobacteria and smaller
phytoplankton are adapted to low-nutrient, high-light
conditions in stratified waters [24]. The consistent
patterns seen in certain signatures during specific
months could also reflect the physiological adaptations
of phytoplankton to seasonal light variations, potentially
impacting their backscattering properties as suggested
by the taxonomic variability in particle backscattering
(BBP)-to-phytoplankton carbon (Cphyto) scaling [25].
Moreover, our findings add a nuanced layer to
understanding phytoplankton dynamics by linking
spectral data with ecological patterns. For example, the
enrichment peaks in signatures from the UW sensor
during early summer might indicate rapid growth phases
or succession events within the phytoplankton
community, which are critical for predicting carbon
export potential during these periods. This aligns with
the discourse on the impact of community composition
on carbon cycling and the necessity of considering
taxonomic variability in modeling biogeochemical cycles
[22,26]. Future work should focus on integrating these
spectral signatures with direct taxonomic identification
and physiological state assessments to validate the
inferred patterns and enhance the predictive power of
hyperspectral  analyses in  marine ecosystems.
Additionally, adopting newer,  absorption-based
methods for estimating phytoplankton biomass and
carbon content could refine the interpretation of spectral
data, especially in relation to community composition
changes and their biogeochemical roles [27]. Our study
underscores the variability and complexity of
phytoplankton dynamics in marine ecosystems and
highlights the potential of sophisticated analytical
techniques like NMF in unraveling these complexities.
By advancing our understanding of how different
phytoplankton communities contribute to and are
influenced by environmental factors, we can better
predict and manage the impacts of global changes on
marine ecosystems. As global oceanic and atmospheric
conditions continue to evolve, significant shifts in
phytoplankton community structure are anticipated,
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particularly with respect to picophytoplankton and
cyanobacteria. These groups, characterized by their
small size and adaptability, are poised to dominate
increasingly stratified and oligotrophic waters driven by
rising sea surface temperatures and reduced nutrient
inputs from deep waters [23,28]. Cyanobacteria, in
particular, are known for their efficiency in low-nutrient
environments and could  outcompete larger
phytoplankton taxa under such conditions, potentially
leading to a higher prevalence of cyanobacteria in future
marine ecosystems [29]. This shift could have profound
implications for marine food webs and biogeochemical
cycles, as cyanobacteria and other picophytoplankton
typically have different nutritional contents, sinking rates,
and interactions with higher trophic levels compared to
larger phytoplankton like diatoms. Moreover, the
increase in cyanobacteria may also influence the
biogeochemical properties of marine environments,
such as nitrogen fixation rates and carbon sequestration
capabilities. Predictive models need to account for
these changes to accurately forecast the impacts of
climate change on marine ecosystems, particularly the
potential feedback mechanisms involving
picophytoplankton that could alter oceanic carbon
cycling dynamics and nutrient fluxes significantly. We
believe that our approach to studying light in the water
column, as presented in this study, could significantly
add to a better understanding of these changes.
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Figure 1: Study overview. A) Data collection process: Vessel equipped with sensor system was collecting data which
consisted of H-OCR curves (UW and DW), temperature, pressure and reference curve(used for normalization).
Finally the data was matched by the timestamp in order to have total dataset. B) NMF application: Normalized H-
OCR curves were used in NMF with focus on extraction of unique patterns in data. C) Signature characterization:
After signatures were disccovered by the NMF method, they were used in multiple downstream analyses
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Figure 2: Description of data A) Barplot shows number of H-OCR curves collected per month. B) Line plot shows
association between depth (y-axis) and sea column temperature in Celsius (x-axis) for every day in this study. Red
line indicating the measurement conducted on 19th of May shows consistent temperature across almost entire water
column
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Figure 3: NMF Application. A) Reconstruction error for each number of signatures (K). Boxplot indicates that error
decreases rapidly until reading K=5, indicating optimal K. B) Visualization of extracted signatures
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Figure 4: Signature characterization. A) Barplot indicating signature enrichment for UW sensors for each month. B)
Bar plot indicating signature enrichment for DW sensor for each month. C) Line plot indicating average enrichment
of signatures from UW sensor for specific depth bin and month. D) Line plot indicating average enrichment of
signatures from DW sensor for specific depth bin and month

© 2024 Global Journals

Global Journal of Science Frontier Research ( E ) XXIV Issue I Version I m Year 2024



Global Journal of Science Frontier Research ( E ) XXIV Issue I Version I E Year 2024

ADVANCING OCEANIC STUDIES WITH HYPER OCR SENSORS AND NON-NEGATIVE MATRIX FACTORIZATION: A COST-

EFFECTIVE, DATA-DRIVEN APPROACH FOR ANALYZING LIGHT IN MARINE WATER COLUMN

A B
UW Sensor DW Sensor

0.012
- ~ 0.04
H c
g 0.010 o
= £
2 0.008 2 0.03
[ c
w w
20.006 2
2 30.02
© ©
50.004 5
@ ® 0.01

0.002

0.000 0.00

Morning Noon Dusk Morning Noon Dusk
Time of the day Time of the day

Signature

‘ July
X August
% December

Figure 5: Signature enrichment by time intervals A) Line plot indicating how enrichment of signatures in UW sensor,
changes during the time of day and month. B) Line plot indicating how enrichment of signatures in DW sensor,

changes during the time of day and month
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Supplementary Figure 1: Visalization of NMF factorization process for using our data
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Supplementary Figure 2: Distribution of temperature measurements for each month
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Supplementary Figure 4. Barplots showing average enrichment of signatures per sensor, month and depth-bin
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Supplementary Figure 5: Example of tidy signature extraction due stable sea(left) vs. signature extraction when light
was scattered due waves (right)
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