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Recurrent Relationships as an Important Class
of Mathematical Equations in Chemistry

Igor G. Zenkevich

Abstract- The unique potential and different areas of
applications of recurrent (Synonymous: recursive) relationships
in chemistry and chromatography are considered. Recurrent
relations can be used in two forms: as functions of integer
arguments, Yx + 1) = afX) + b, and as functions of
equidistant argument values, Ax + AY) = aAX) + b, Ax =
const. The first form applies to all physicochemical properties
of homologs in organic chemistry, because the number of
carbon (and other) atoms in a molecule can be integer only.
The second one applies to chemical variables depending on
temperature, pressure, concentrations, etc., when the
chemists should provide equal “steps” of their variations.

Recurrent relations combine the properties of
arithmetic and geometric progressions, which accounts for
their unique approximation abilities. This was illustrated by
approximating the number of isomers of alkanes, the boiling
points of homologs (nonlinear dependencies), the melting
points of homologs (alternation effects), the temperature
dependence of the solubility of inorganic salts in water, and by
revealing the anomalies of gas chromatographic retention
indices and retention times in reversed-phase high
performance liquid chromatography. In the latter case, specific
anomalies in the recurrent approximation of retention times
allow detecting the reversible hydration of analytes.

The restricted text cannot represent all the examples
of the applications of recurrent relations in chemisiry and
chromatography. However, even this short review allows us to
conclude that the potential of recurrences should not be
underestimated.

The author confirms that the objective difficulties of
the perception of recurrences seem to be the main reason for
their rare use in chemistry. In such a situation, any examples of
demonstrating their capabilities are significant. Consequently,
the author is very grateful to the Editorial Board of GJSFR for
the kind offer to submit a manuscript on this topic.

Keywords: recurrent relations, chemistry,
chromatographic retention, chemical variables, number
of isomers, physicochemical  properties, linear
approximation.

[. INTRODUCTION

athematics is an essential tool for data
I\/l processing in all natural sciences, including
chemistry [1-4]. However, in all of them, there
are several stereotypes of presenting different

mathematical equations. Most of them are the following:
in equations of the form y = f(x, ...) the argument(s) (x,
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...) are typically on the right side, while the function is on
the left. The number of possible examples is so large
that it is difficult to estimate it. For instance, the well
known Antoine equation which has many chemical
applications relates the absolute temperature (7,
argument), and the vapor pressure of pure liquids (P,
function): log P = a/T + b (the coefficients a and b
should be precalculated). If necessary, the argument
and function can be swapped and this relationship can
be used to calculate the temperature from the pressure.
Besides that numerous analogues of Antoine equation
are used in different areas. For instance, the
dependence of retention times vs. temperature of gas
chromatographic column is described with Antoine-like
equation log(ty” ) = a/T + b.

Numerous other forms of representing
dependences (e.g., parametric) are known for
mathematicians, but in chemistry they are perceived as
rather unusual.

Recurrent equations are precisely such unusual
forms of mathematical relationships. The main feature of
them is the absence of arguments in their writing:
recurrent equations relate the current value of a function
to its previous value(s). The rare use of these relations is
confirmed by the fact that many contemporary manuals
have no information about them. Recurrent (recursive)
progressions are mentioned in [2, P. 174] only as a
particular case for comparing with other progressions
(arithmetic, geometric, etc.). Such an attitude towards
recurrences cannot be accepted, since the properties of
recurrences make them indispensable mathematical
object in chemistry. The main reason of that is,
probably, just unusual mathematical form of
recurrences, namely the absence of arguments.

The purpose of this article is to illustrate the
application of recurrences with examples from various
areas of chemistry and chromatography.

Generally, the most straightforward (first-order)
linear recurrences can be represented in two ways. The
first kind of recurrence combines the values of functions
of discrete integer arguments (n + 1 and n) in relation

(1):
y(h+1) = ayln) + b M

The coefficients a and b should be
precalculated by the least-squares method using data
for a preselected training set.
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At first glance, the scope of application of such
relations with integer arguments seems to be somewhat
limited. However, it is not; in organic chemistry many
properties of organic compounds are considered as the
functions of their positions in the corresponding
homologous series, or, in other words, of the number of
carbon (or other elements) atoms in the molecule.
Meanwhile, the number of atoms of any element in a
molecule can take integer values only. It is the principal
reason for the applying of recurrent dependences to
various properties of organic compounds. One can only
be surprised that this was not been done before 2006,
but it may only be explained by the unfamiliarity of these
relations.

The second form of recurrent dependences
applies to any functions for which it is possible to
provide the equidistant argument values, namely, in the
form (x + Ax), where Ax = const (relation 2). In other
words, the experimenter must select appropriate
argument values from their possible multitude:

Such an expansion of the domain of definition
allows applications of recurrences to functions of
continuous variables such as temperature (7), pressure
(P), concentrations (C), etc., i.e., not only to properties
of homologs in organic chemistry, but also to
characteristics of chemical systems in physical,
analytical, inorganic chemistry, etc.

The general feature of recurrences is the
absence of argument values in both parts (left and right)
of equalities. Every point on the plots of recurrences is
specified by two values of functions: current and
previous, or current and subsequent ones. The second
feature of equation (2) is the appearance of the
additional (artificial) variable Ax: the shape of the graph
begins to depend on this value.

As a result, both forms of recurrences are
somewhat difficult to visualize, which explains in some
way their rare use in scientific practice. To illustrate this,
let us consider as an example the recurrent
representation of any well-known function y(x). Let us
select 36 points within the domain of its definition with

yx + Ax) = ay(x) + b, Ax = const (2) theincrement Ax = 10 and build a plot corresponding to
the equation y(x + 10) = ay(x) + b, shown in Fig. 1.
y(x + 10)
1,04 -t
0,51 - .
0,0 . .
-0,5+ .
10 &
-1,0 -0,5 0,0 0,5 1,0
y(x)

Fig. 1: Recurrent representation of a well-known mathematical function in the form y(x + 10) = ay(x) + b. It is not so
easy to recognize it

We obtain some kind of closed ellipsoidal
curve, which has no analogues among the plots of
commonly used functions. If we change the value Ax
and select Ax = 1 (or less) instead of Ax = 10, the
ellipsoidal curve will turn into a practically straight
segment located between points (-1, —1) and (+1,+1).
So as not to continue the intrigue, let us note that this
function is y = sinx, but it is rather difficult to “recognize”
it from the recurrent graph without special preparation.

First-order recurrent relations like (1) or (2) look
like simple mathematical expressions only at a first
glance. These equations have the non-recurrent
algebraic solution that is an unusual type of polynomial

© 2024 Global Journals

of variable degree, because the values of the argument
are the power:

yk) = y@Qa" + b@-1)/@-1) )

This solution can be easily found using MAPLE
software. The value of the auxiliary parameter y(0)
should be predetermined, for example, using the value
y(1), because atx = 1 y(1) = y(0)a + b, and y(0) = [y(1)
—-b]/a.

This solution is the row, because @ - 1)/ (@ —
1) =a" + a2+ ... + 1. The variable degree of this
polynomial is a crucial explanation of the usefulness of
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applying recurrences to approximation of chemical
variables. This fact deserves special comments.

Example 1: Let us try to approximate the nonlinear
dependence of normal boiling points of 1-chloroalkanes
C.H.+1Cl on the number of carbon atoms in a molecule:
46.2°C (n = 3), 78.4°C (n = 4), 107.8°C (n = 5), 135.6°C
(n = 6), 160.6°C (n = 7), 183.8°C (n = 8), 205.4°C (n =
9), and so on. The commonly used way to do this is
choosing the fixed-degree polynomial (e.g., second or
third). At the same time, the polynomial of variable
degree (3) will have the degree x = 3 for propyl chloride
(n = 3), x = 4 for butyl chloride (n = 4), x = 5 for pentyl
chloride (n = 5), etc.

In addition, a noticeable consequence of the
application of this approach can be derived from this
solution. Ifa=1 and b # 0, equation (3) transforms into
the relation for a simple arithmetic progression, y(x) = k
+ bx. At the same time, if 0 < a # 1 and b =0, this
equation transforms into the expression for geometric
progression, y(x) = ka*. Hence, in the general case (at
arbitrary values of coefficients a and b), the recurrent
equation (1) and/or (2) combines the mathematical
properties of both kinds of progressions in variable
proportions. It explains us the excellent approximating
‘power” of recurrences for numerous chemical
variables. Thus, we must conclude that recurrences are
not the particular case of other progressions [2] but are
their generalization.

The second noticeable consequence from
equation (3) is the behavior of function y(x) or A(nc) with
a hypothetical increase in the number of carbon atoms
in a molecule, x —oo, or ne —. If the value of coefficient
a obeys the inequality a < 1, the limit of polynomial (3)
exists, and it is equal to:

lim A(no) | v = b/ (1-a) 4)

If a > 1, the initial numerical sequence has no
limit and tends to infinity.

The author cannot cite all his papers devoted to
the properties and chemical applications of recurrences
due to the necessity to restrict the self-citation. Only six
of them published within the period from 2009 to 2024
are mentioned as references [5-10].

To conclude the Introduction, it should be noted
that, probably, the most famous and widely mentioned
examples of recurrences are so-called Fibonacci
numbers, F,,, known since ancient times [11-13]:

Fn :Fn—2+Fn—1:

A special journal named The Fibonacci
Quarterly has been published since 1963 (see ref. [11]).
[I. EXPERIMENTAL

This semi-review article does not imply specific
experimental conditions. The necessary data are

available from the references cited. In general, recurrent
relationships can be applied to any non-linear set of
equidistant variables not only in chemistry or
chromatography. For example, the temperatures of the
cooling kettle, T(°C) = f(t, min) are: 72(0), 62(5), 55(10),
50(15), 46(20), etc. All these data correspond to the
linear recurrent dependence T(t + 5 min) = al({t) + b
with the following parameters: @ = 0.72 = 0.01. b =
10.0 = 0.8, R = 0.9996, S, = 0.2.

Another important example is the approximation
of the carbon dioxide content in the atmosphere of Earth
(data from site http://climate.gov),(CO, concentration
(ppm)) = f(year): 324(1970), 337(1980), 353(1990),
369(2000), 390(2010), and 412(2020). Parameters of the
recurrence C(year + 10) = aC(year) + b are: a = 1.14
+0.01,b =-33 = 8, R=0999, S, = 1.2. After that we
can easily (because the dependence is linear) estimate
the concentration of CO, in the atmosphere at 2030: it
should be 1.14 x 412 - 33 = 437 ppm.

The values of different physicochemical
properties of organic compounds (boiling points,
melting points, etc.) were taken from all available
sources of reference information, e.g., [14], as well as
from Internet. The necessary stage of processing the
initial information was the rejection of outliers, followed
by averaging the data. It is required because
recurrences are very “sensitive” even to minor errors in
data sets.

The simplicity of recurrent calculations requires
special comments. The use of, e.g., Origin software
implies the following stages. First, the initial data on the
function of integer (equation 1) or equidistant (equation
2) arguments are entered into column A[X]. The next
step is copying all data from this column excluding the
value from the first line into column B[Y] with shifting one
line up. Just such shifting is the sense of recurrences.
After that, we can operate with the obtained two-
dimensional data array in the usual way, i.e., plot this
dependence and calculate all the parameters of the
linear regression y(x+1) = ay(x) + b. For example, let us
make the recurrent approximation of the squares of
natural numbers from 3 to 10. Hence, the first column
(Origin or Excel software) contains the values 9, 16, 25,
36, 49, 64, 81, and 100 (eight values). The second
column (shifted) in the same lines contains the values
16, 25, 36, 49, 64, 81, and 100. In the result we obtain
seven pairs of numbers for calculating the parameters of
linear regression by least squares method: a = 1.16 =
001, b =45 =05 R =0.9998, S, = 0.7. The plot of
this dependence looks like "ideal" straight line. Such
calculations are very simple, and the application of no
special functions is required.
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[11. RESULTS AND DISCUSSION
a) Chemical Applications

i.  Number of Isomers
In this section, it seems advisable to avoid
considering the simplest artificial examples and start
directly with real chemical problems. The first is the
dependence of the number of structural isomers (N) of
homologs on the number of carbon atoms in their

molecules (ng). The number of such isomers for n-
alkanes Cgs—C,q is listed in Table 1; it is the rapidly
increasing function [15]. It is noteworthy that estimates
of the number of isomeric alkanes with n; = 18 and
above, obtained by different methods, appeared to be
slightly different, e.g., 60524 vs. 60523 for C;gHss.
However, such small differences for many practical
purposes are negligible.

Table 1. Number of structural isomers of alkanes CH,,.»

Number of
Carbon Atoms,

Slo|xNjo|o| S

11

12

13

14

15

16

17

18

Number of
Structural Logn
Isomers, N
3 0.477
5 0.699
9 0.954
18 1.255
35 1.544
75 1.875
159 2.201
305 2.550
802 2.904
1858 3.269
4347 3.638
10359 4.015
24894 4.396
60524
(60523)* 4.782

The plot of this function N = f(n¢) for alkanes
with 5 < ng < 17 is presented in Fig. 2(a). It seems
rather challenging to precalculate the number of
isomeric alkanes with a higher number of carbon atoms
because we do not know the type of this function (it
should be evaluated or assumed preliminarily).

(@)

However, if we transform this dependence to the linear
form, the problem’s solution enormously simplifies,
because we can evaluate other values using the
simplest  linear  extrapolation.  Just  recurrent
approximations allow us to implement this approach.

(©) ©
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Fig. 2. (a) Plot of the number of structural isomers of alkanes CH,,.» (N) vs. the number of carbon atoms in the
molecule (ng); (b) plot of the recurrent dependence N(ng + 1) = aN(ng) + b; parameters of the linear regression: a
= 2429+ 0.004, b = -62+ 30, R = 0.99999, S, = 98; (c) plot of the recurrent dependence of logarithms, logN(n. +
1) = alogN(ng) + b; parameters of the linear regression: a = 1.036 + 0.005, b = 0.248 + 0.012, R = 0.9998, S, =

0.02

Approximating the data set in the form N(ng +
1) vs. N(n¢) gives the plot presented in Fig. 2(b). It is a
linear dependence with the correlation coefficient R =
0.99999. Other parameters of the linear regression are

© 2024 Global Journals

indicated in the footnote to Fig. 2. If the correlation
coefficients exceed 0.999, the plots of such
dependencies are visually perceived as absolutely
straight lines. It is an essential moment in the
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characterization of recurrent dependencies. For
numerous chemical variables, these dependencies are
linear, but if not, the reasons of deviations from linearity
should be investigated. If we will use this result for
evaluating the number of isomers of alkane C,gH;5 using
the number of isomers for the previous alkane C;;Hgq,
we should make the following simple calculations:

24894 x 2.429 - 62 ~ 60406

For the example considered the evaluation of
uncertainty appeared to be approximately +98. The
correct answer is 60524 or 60523 isomers (Table 1).
Hence, the relative error is approximately 0.19%. Such
accuracy seems to be enough for many practical
pUrposes.

This example illustrates another feature of
recurrent approximation. If it is linear for variable x, it
remains linear for any monotonic functions of this
variable, e.g., x", log(x), exp(x), etc. Hence, we can
approximate not the number of isomeric alkanes (N) but

(@)

(o]
3001 To, C

200+ .
100 .
0- .

-100+ -

-200 T T T T T T T T T
0O 2 4 6 8 10 12 14 16

number of carbon atoms in the molecule, n¢

©)

4001 Tp(ne), °C
, E -
300 /,»/’!}})/
200+ ’f,«’
100+ )W,w**'
0- /
1
-1001
100 0 100 200 300 400
Tb(nc), OC

the log Nvalues. Fig. 2(c) illustrates the linear recurrent
dependence for logarithms of isomers’ number.

The number of isomers of homologs of other
series [16, 17] can be approximated using recurrent
relations without any restrictions.

ii. Approximation of Boiling Points of Homologs

To illustrate the potential of recurrent relations in
form (1) (functions of integer argument), let us consider
the approximation of values of any physicochemical
properties of homologs. The simplest example is normal
(at the atmospheric pressure) boiling points (7,) of n-
alkanes C H,,., within the set of compounds C,-C,, (if
necessary, this range can be expanded); the reference
data are readily available [14]. The plot in Fig. 3(a)
illustrates the initial nonlinear dependence T,(nq); the
linear recurrent approximation T,(nc + 1) = aly(ng) + b
is illustrated in Fig. 3(b). The parameters of the linear
regression are listed in the footnote to this figure.

(0)
300, To(nc+1),°C
200
100

O,

-100,

100 0 100
Tb(nc), OC
(d)

To(nc + 1), °C

-200 200 300
300-
200
100

O,

-100-

100 0 100
Tb(nc), OC

2200 200 300

Fig. 3: (a) Dependence of the normal boiling points of n-alkanes C,—-C,, (°C) on the number of carbon atoms in the
molecule; (b) recurrent approximation of the normal boiling points (equation 1); parameters of linear regression: a =
0916 £0.003, b = 36.9 £ 0.5, R = 0.99993, S, = 1.2; (c) recurrent approximation of the normal boiling points for all
alkanes (including branched isomers); parameters of the linear regression: a = 0.922 + 0.003, b = 35.6 + 0.5, R =
0.9997, S, = 2.0; (d) recurrent approximation of the normal boiling points for perfluoro-1-alkanes C.Fs..5;
parameters of the linear regression: a = 0.91+0.01,b =325+ 1.4, R =0.9991, S, = 4.2
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The next exciting feature of recurrences does
not follow from their mathematical properties but has a
critical chemical sense. Namely, if the recurrent
linearization is valid for normal alkanes (with non-
branched carbon skeleton), the equation with practically
the same coefficients will be valid for all isomeric
structures of the same class, i.e., for alkanes with
branched carbon skeletons. It is illustrated by Fig. 3(c)
(89 points for iso-alkanes were added). Comparing the
coefficients of recurrences (b) and (c) confirm their
identity: 0.916 and 0.922 (values of coefficient a), as well
as 36.9 and 35.6 (values of coefficients b). Moreover,
combining the data for 189 homologs of 10 different
homologous series confirms the existence of a single
linear relationship for all of them with the following
parameters: a = 0.930 + 0.002, b = 335 = 0.3, R =
0.9995, S, = 2.4 [7]. It allows us to conclude that
coefficients a and b or recurrent regressions are close to
each other for all homologous series with the same
homologous differences, at first CH,.

The following example illustrates the
applicability of recurrences not to alkanes but
compounds of other chemical nature. The plot of the
recurrent approximation of boiling points of perfluoro-n-
alkanes C,—C,, is presented in Fig. 3(d).. The correlation
coefficient of this dependence exceeds 0.999.

The linearity of recurrent relations makes it
possible to evaluate the boiling points of any next
homologs using the data for previous ones.

Example 2. Let us evaluate the normal boiling point of 1-
chlorodecane wusing 7, value for 1-chlorononane
(205.4°C, see Example no. 1). The values of recurrent
coefficients for the series of chloroalkanes are a = 0.923
+ 0.002, b = 35.7 = 0.3, R = 0.99999, and S, = 0.3.
The next step of calculations is simple: 205.4 x 0.923 +
35.7 = 225.3°C (the reference value is 225.8°C).

Example 3: Let us evaluate the normal boiling point of n-
butylisocyanate using T, value for n-propylisocyanate
(88°C). As the data for the series of alkyl isocyanates are
insufficient to calculate the coefficients of equation (1),
let us use the “universal” values of these coefficients for
any homologous series (see above). The result is 88 X
0.930 +33.5 = 115.6°C (the reference value is 115°C).

Recurrent relations provide linear
approximations of not only normal boiling points but
also the values of other physicochemical properties of
organic compounds within homologous series, A(ng).
These include, for example, relative density (d,%),
refractive index (np®), dynamic viscosity (u), surface
tension (0), ionization potential (/), acidity constant (pK,),
dielectric permittivity (€), water solubility (w, pS), and
many others. The fundamental requirement to the
dependences A(n¢) is the same: these functions should
be monotonic (the signs of their first derivatives should
be constant). The example of nonmonotonic
dependencies is, for instance, the temperature
dependence of the solubility of organic compounds in
water.

Due to the problem of the monotony of changes
in the values of physicochemical properties of organic
compounds, it is interesting to consider another form of
recurrent relations, namely, second-order recurrences:

y(n+2) = ay(n) + b (5

ii.  Melting Points of Homologs

Similarly to the previous ones, the coefficients a
and b of equation (5) should be precalculated by the
least-squares method. The algebraic solution of
equation (5) can be found in the same way as the
solution of equation (1) using MAPLE software.
Surprisingly, it turned out to be much more complex
than the solution of (1):

v = (YOa-yWa)—a) T x-(yVa-ay@)a)Tx b bHa-a)(—~/a)T x+ba+a)a)T x

2a

Relation (6) obviously cannot be recommended
for any calculations due to its complexity, but it allows
us to make important conclusions. First, this solution
contains negative terms to the x power, namely (-
sar(@)) . It means that these terms have different signs
depending on whether the x-values are even or odd.
Therefore, the presence of terms with alternating signs
in the equation makes it applicable for approximation of
variables with pronounced alternation effects. The most
important of these variables are the melting points of
homologs with even and odd numbers of carbon atoms
in the molecules. The alternation of the melting point is
well known for n-alkanes, n-alkenes, 1-alkanols,
carboxylic acids, 1-alkylamines, numerous 1,0-

© 2024 Global Journals
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difunctionalized alkanes, etc. Fig. 4 illustrates different
kinds of the recurrent data approximation for 1-
alkylamines. Plot (a) represents the set of initial data,
“distorted” with alternation effects. The first-order linear
recurrent approximation (equation 1) converts this plot
to two nonparallel straight lines (b). Finally, the
application of equation (5) to this data set gives a single
straight line with the correlation coefficient R = 0.9996
(no less than the R-values in the other cases mentioned
above), but with irregular arrangement of points (c). The
parameters of linear regression (c) are listed in the
footnote.
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Fig. 4: (a) Dependence of the melting points of n-alkylamines C,—C,5 (°C) on the number of carbon atoms in the
molecule; the alternation effect is easily noticeable; (b) recurrent approximation of the melting points (equation 1); all
points belong to two non-parallel lines; (c) recurrent approximation of the melting points for n-alkyl amines (equation
4); parameters of the linear regression: a = 0.786 £ 0.006, b = 16.1 £ 0.2, R = 0.9996, S, = 0.9

Secondly, despite the complexity of equation
(6), it is easy to conclude that the limiting value of y(x) at
x —o is the same as that of the polynomial (3), namely,
b/(1 — a). Hence, we can evaluate the melting point for
hypothetical 1-alkylamine with n = o, i.e.,,16.1x(1 -
0.786) = 75°C. The highest-molecular-mass 1-
alkylamine for which the melting point has been
determined is 1-octadecylamine with T, 53°C [14].

Another example with alternating melting points
of homologous n-alkane carboxylic acids is considered
in [5].

iv. Temperature Dependence of
Inorganic Salts in Water

The next possible application of recurrences is

approximating the temperature dependence of the

solubility of inorganic salts in water, w(T), g/100 g of

water. It is known that numerous inorganic and some

Solubility  of

organic compounds form hydrates in aqueous
solutions. Using the recurrences allows us to detect
important features of the data sets on solubility, namely,
the formation of hydrates. If the dissolved compound
exists in the single chemical form (either hydrated or
non-hydrated) at different temperatures of the solution,
the recurrent approximation of w(T) dependence has no
anomalies; i.e., it is linear. This case can be illustrated
with plots for the solubility of copper sulfate within the
temperature range 0 < w(T) < 100°C presented in Fig.
5. Despite the nonlinearity of the initial dependence w(T)
(@), its recurrent approximation has the correlation
coefficient R = 0.9998 (b).
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(@)

80, Solubility (w), g/100 g of water
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10— w w r w
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g, W(T +20°C), /100 g of water

10 20 30 40 50 60
S(T), 9/100 g/ of water

Fig. 5: (a) Nonlinear temperature dependence of the solubility of copper sulfate pentahydrate (CuSO,5H,0); (b)
linear recurrent approximation of this dependence, w(T + 20°C) = aw(T) + b; parameters of the linear regression: a

=136+0.02,b=04+06,R=0.9998,S,=0.5

Another example is the solubility of potassium
acetate (Fig. 6). Considering the initial w(7) dependence
(@) does not allow us to decide whether the leftmost
point is weird or belongs to a general nonlinear
dependence. The red line in plot 6(a) results from
approximation w(7) by a fourth-degree polynomial.
However, if we present the same data in the recurrent
form, we obtain the linear dependence for all the points
(R = 0.9998), excluding the leftmost one, which is an
obvious outlier. It follows from this fact that, at low
temperatures (e.g., 0°C), this salt exists in another form,
less soluble than we can expect from the dependence
w(T) at other temperatures.

b) Applications of Recurrences in Chromatography

i. Revealing the anomalies of gas chromatographic
retention indices of chlorinated benzenes

Gas chromatographic retention indices (Rl) are

important chromatographic characteristics of analytes

OO Q

(I (1 ()

and are informative for their GC-MS identification. Let us
consider the sequence of GC retention indices (RI) for
benzene and its chlorinated derivatives with chlorine
atoms in unhindered positions (the series of so-called
congeners). It includes data for only four compounds,
namely, unsubstituted benzene (l), chlorobenzene (Il),
1,3-dichlorobenzene (lll), and 1,3,5-trichlorobenzene (IV)
(all chlorine atoms are in meta-positions relative to each
other). It should be noted that all Rl values were taken
from an independent source of reference information,
namely, the NIST RI Database [18]:

0, L

(V)

Rl values on standard non-polar polydimethylsiloxane stationary phases [18]:

654 £ 7 989 = 10

Adding the next chlorine atom (1,2,3,5-
tetrachlorobenzene, V) will cause it to be in an ortho-
position to two other chlorine atoms, which gives rise to
steric tension in the molecule. However, it is difficult to
identify this effect directly from the dependence Rl =
f(ne) (Fig. 7(a)). At first glance, only the second point

from the right on this plot seems to be located slightly
© 2024 Global Journals

839 £ 7

1117 =14 1322 = 11

below the regression line, which is not understandable.
At the same time, plotting the recurrent dependence
Rl(ng + 1) = aRl(ng) + b (Fig. 7(b)) immediately reveals
the anomaly just for the rightmost point corresponding
to tetrachlorobenzene (V). The steric hindrance in this
tetrachlorobenzene increases its retention index above
the value extrapolated from data for other (non-
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hindered) congeners. Similar effects are also observed
for retention indices of bromo- and methyl-substituted
benzenes.

(@)

Solu bility, wiT), gM00 g of water

(1]
o

0 20 40 80 80 100
T

(o)

wiT+ 100C), g0} g of water
80+

T8~

T4

T2

T

\£5/ 70 75 20
wiT), g/100 g of water

Fig. 6: (a) Nonlinear temperature dependence of the solubility of potassium acetate (CH,CO.K) in water; (b)
recurrent approximation of this dependence, w(T + 10°C) = aw(T) + b; parameters of the linear regression without
the leftmost point: a = 0.882 + 0.005, b = 10.1 £ 0.4, R = 0.9998, S, = 0.5.

(@)
1400, Retention index, RI
12001
10001

8001

600 w w \ ‘ |
0 1 2 3 4

Number of chlorine atoms in a molecule, ng

(o)

14007  RI(ng + 1)
1300+
1200+
1100+
1000

900

800 : \ ‘
600 1000 1200 1400

R|(nc|)

800

Fig. 7: (a) Dependence of the retention indices of benzene and its four chloroderivatives (see text) on the number of
chlorine atoms (standard nonpolar polydimethylsiloxane stationary phase); (b) recurrent approximation of this
dependence, RI(ng + 1) = aRl(ng) + b; parameters of the linear regression without the rightmost point: a = 0.83 +

0.01,b=296+10,R =0.9998, S, = 2.9

The last example illustrates the next important
feature of recurrences. In many cases, the deviations of
recurrent approximations from the linearity seem to be
no less informative than the linearity of these
dependencies. The explanation of this fact appears to
be relatively simple: Recurrent relations (1) or (2) allow
linear approximations of numerous monotonic
dependencies, but preferably if they can be described
with a single equation. If these dependencies are
distorted by additional effects, the high “linearization
ability” of recurrences appeared to be insufficient for
their linearization. This feature allowed us to detect the

steric effects of the fourth chlorine atom in RI values of
chlorinated benzenes.

ii.  Revealing the anomalies of retention parameters in
reversed-phase high-performance liquid
chromatography

Considering the results of the last example, let
us discuss the unusual applications of recurrent
relations in reversed-phase high-performance liquid
chromatography (RP HPLC). It is the contemporary
analytical method based on the different distribution of
smallest amounts of analyzed compounds (analytes)
between moving liquid phase (eluent) and stationary
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phase fixed in a chromatographic column (modified
silica gels).

The dependences of retention times of analytes
on the content of organic solvent in an eluent, tz(C),
should be considered first. Establishing the regularities
of these dependencies seems to be the general
approach in characterization both analytes and sorbents
in chromatographic columns [19-22].

First, let us illustrate the general statement
mentioned in the previous subsection: If the
dependence fx(C) has no anomalies, its recurrent
approximation is linear with a high R-value. The absence
of anomalies means the single law of variations of
retention times vs. concentration of organic modifier in
an eluent throughout the concentration range under
consideration. It can be illustrated with data for
acetophenone (methanol-water eluents). Chromatogra-
phic analyses were performed using a Shimadzu LC-20
Prominence liquid chromatograph equipped with a
diode-array detector and Phenomenex C18 columns
250 mm long and 4.6 mm i. d. with a sorbent particle

3 57 \
301\
257

157
104 S

30 40 50 60 70 80
C(CH5OH), % vol.

size of 5 um. Water-methanol mobile phases were used
in several isocratic modes with 5 or 10% concentration
steps of methanol at an eluent flow rate of 1.0 mL min™
and column temperature of 30°C. The samples were
injected using an SIL-20A/AC autosampler; the sample
volume was 20 ulL. To prepare eluents, we used
deionized water (resistivity 18.2 MQ cm) prepared using
a Milli-Q device (Millipore, USA), and methanol
(analytical grade, Kriokhrom, St. Petersburg). The pH
values of the eluent were 6.2-6.3. The number of
replicate injections of each sample was 2-3. The
interinjection variations of the retention times in all the
cases did not exceed 0.01-0.02 min.

The plot in Fig. 8(a) presents the initial nonlinear
(close to exponential or hyperbolic) dependence of
retention times of acetophenone on the methanol
content in the eluent. The recurrent approximation of
these data (Fig. 8(b)) is linear with R = 0.99999. Such
R-value means that 99.999% of this function is a linear
component, and only 0.001% is its distortion.

(0)

35, tr(C + 10%), min
30-
25
20-
15-
10
5-

4 6 8 10 12 14 16 18 20
tr(C), min

Fig. 8: (a) Plot of the acetophenone retention time (min) vs. methanol concentration in the eluent, t5(C): 32.464(30),
18.244(40), 11.230(50), 7.774(60), 6.052(70), and 5.226(80); (b) recurrent approximation of these data: tz(C + 10%)
= atz(C) + b. Parameters of the linear regression: a = 0.4932 + 0.0005, b = 2.231 £ 0.008, R = 0.99999, S, = 0.01

(no outliers)

Let us combine two theses. First, some organic
compounds form hydrates and some of these hydrates

are pretty stable. Several examples of such compounds
are, for example:

Compound CAS no. of CAS no. of
anhydrous form hydrate
Glycine 56-40-6 130769-54-9
Oxalic acid 144-62-7 856335-90-5 (mono)
6153-56-6 (di)
Toluene 108-88-3 112270-21-0
Phenol 108-52-2 217182-78-0
144796-97-4
Nicotinamide 98-92-0 917925-73-6
Caffeine 58-08-2 5743-12-4
Methane (1) 74-82-8 14476-19-8
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CAS numbers obviously are different both for
anhydrous and hydrated forms of the compounds
mentioned. Such a number for a hydrate does not
confirm its stability or isolation; it is the confirmation of
interest in this hydrated form. It is interesting that this list
even includes the simplest hydrocarbon, methane.
Second, the separation of analytes in RP HPLC takes
place in water-containing eluents, when the probability
of hydrate formation is high.

To identify the area in which anomalies should
be expected, let us look again at Fig. 6. So far as the
formation of hydrate of potassium acetate is most
probable at low temperature of the aqueous solution,

20
18-
16-
14+
12
10

one anomalous leftmost point corresponds to the
minimal values of solubility, w(T). In HPLC eluents, the
hydrate formation is most probable at the maximal water
content of an eluent. Hence, the weird point in the t;(C)
plot should be located on the right. The plot in Fig. 9
represents the recurrent approximation of the set of
retention times 3(C) for 2-methoxybenzaldehyde oxime
at retention times within the range of approx. 5-40 min.
Four points belong to the single straight line with the
correlation coefficient R = 1.000, but the rightmost point
deviates downward from the regression line [10]. The
formation of hydrates was confirmed experimentally for
some oximes of aromatic carbonyl compounds [23, 24].

1 tr(C + 10%), min

0 10

20 30

tr(C), min

Fig. 9: The plot illustrating the anomaly (the rightmost point below the regression line) in the recurrent approximation
of the retention times for 2-methoxybenzaldehyde oxime. Parameters of the linear regression (without outlier): a =

0.4763 £ 0.0006, b = 2.144 £0.007, R = 1.000, S, = 0.006.

It is worth noting that deviations of the rightmost
points in the plots of recurrent approximations of
retention times in RP HPLC were detected for the first
time for complex organic compounds, namely, synthetic
antitumor sulfonamide drugs containing the polar
functional group -SO,-NRR’ [9]. Most sulfonamides
form stable hydrates, which can be isolated in a solid
form [25-28].

Thus, the recurrent approximation of retention
times in RP HPLC allows us to detect the reversible
formation of hydrates of analytes. The possibility is all
the more important considering that detecting hydrates
using other methods is much more difficult.

V. CONCLUSION

This manuscript provides a brief exploration of
the applications of recurrent relations in chemistry and
chromatography, acknowledging that it cannot
encompass all possible examples. Nonetheless, the
review highlights the significant potential of recurrent

relations in simplifying calculations through the
linearization of diverse chemical dependencies.

The linearization achieved by recurrent relations
not only streamlines mathematical manipulations but
also reveals valuable insights from deviations in
chemical dependencies. For instance, in reversed-
phase high performance liquid chromatography (RP
HPLC), non-linear variations in retention times can
indicate  hydration phenomena  during analyte
separation.

Formally, two alternative conclusions emerge
from our discussions. Firstly, a broad hypothesis posits
that many monotonic chemical variables follow first-
order recurrent dependencies — a potential general law
in chemistry. However, a more modest yet preferable
conclusion emphasizes the exceptional extrapolation
capabilities of recurrent relations, which justify their
widespread adoption in approximating a wide array of
chemical variables.

In conclusion, to make a reader smile, one
humorous application of recurrences should be
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mentioned. There is a very nonlinear dependence of the
time of drop falling of liquid (including wine) from an
empty bottle, f(n), on the serial number of the drop (n).
No idea concerning the analytical form of this function
can be proposed (or, at least, it is rather difficult).
However, the recurrent representation of this
dependence, t(n+1) = at(n) + b, demonstrates the
excellent linearity [5].
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