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factor of the polynomial’'s constant and the value of the imaginary component of the root. This integer, called the
‘negative base multiple,’ appears consistently across multiple sets, which we term ‘iterative imaginary number sets.’ By
increasing initial y values starting at /7=3, this pattern is observed for entire sets of multiples.
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[.  INTRODUCTION

a) Opening

Mathematics is at its root, a study of patterns using constraints and established
axioms to establish new techniques and ultimately, gain a deeper understanding of the
numbers which live all around us. Among these numbers, complex numbers, often
referred to asimaginary numbers, offer solutions where real numbers fall short.
Applications of these number types appear in many real-world applications including
quantum computing, medical imaging, financial mathematics and optical engineering,
amongst many other various fields. This article will focus on identifying and analyzing
patterns in the integers that appear repetitively in both the inputs of the polynomials
and the imaginary components of their roots or zeros.

b) Scope of Paper
In the scope of this work, we aim to establish the idea of iterative imaginary

number sets, or numbers that are both real and imaginary, matching x-values of roots
for certain 4™ degree polynomials. The similar polynomial expressions contain four
interchangeable variables: two that makeup the complete iterative set, which we call
multiple sets for each similar polynomial, one which is a converging negative constant
and one which is a converging positive coefficient. The polynomial expressions

themselves are similar:

x*+ax3+px2+yx—c=0
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Where, a is the first variable of the multiple set, y is the second variable of the multiple
set, c is some negative constant of which the x-value is a negative factor of, and g is
some positive coefficient value, beginning at f = 2.

[I. METHODOLOGY

a) Background
In fourth-degree polynomials expressions, specific patterns arise where the roots

include an imaginary value that corresponds to a negative factor of the polynomial’s
constant term. This pattern repeats across multiples of these negative constants. By
increasing initial y values beginning at n=3, we find the pattern exists for entire sets of
multiples of the negative constant, which is the same value as the polynomials negative
square root zero. and what we call ‘iterative imaginary number sets’; a formal name
given to the repetitive integers that serves as both a negative factor of the polynomial’s
constant and the imaginary component of the root. You will see over the next few
sections of equations, that iterative imaginary numbers like -3, -7.-11, -15 and -19 share
a duality when configured into this general polynomial expression, as being both the x-
value within the negative square root (imaginary value) of the polynomials root and a
negative factor of the polynomials negative constant, while also representing the base
of general multiplicative set being tested by the polynomial.

b) Multiples Sets in the Pattern
Set A is the example for -7:

Set A
Multiples al| vy
M1 1
M2 2 14
M3 3 21
M4 4 | 28
M5 5) 35
M6 6 | 42
M7 7| 49
M8 8 | 56
M9 9 | 63

Here, for all @ Ay € A, when expressed as roots of the constricted polynomial:

x*+ax®+2x>+yx—35=0
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Result in the same constant complex x-values of  x = +iV7 for every
a,y in A& c= —35. We cannot alter the constant for the set of -7 (Set A) and still
effectively see the pattern result from same statement, meaning that for the multiples
of -7, the negative constant can only be -35 & the base multiple will always be
x = +iV7.

The pattern arises from the general polynomial form then in that the negative
base multiple (M1 y for each set) is also the same integer inside the negative square
root, when finding zeroes of the polynomial. The imaginary unit and the real number
share this commonality for every multiple set, for the first 9 positive multiple pairs of
each multiple set. The a of each multiple set remains the same, acting as both an
independent variable and the multiplier by the base multiple for each pair to create

each y value.
The imaginary zeroes of the polynomial will always be the same value as the

negative base multiple, defined here as Iterative Imaginary Zeroes.

c) Algebra for Set A of Iterative Multiples
Proof for Set A, Negative Base Multiple of -7 (finding x for the complex result only)

(M1)
x*+x3+2x24+7x—-35=0

(x> =7)(x*+x—-5)=0

(M2)
x*+2x3+2x2+14x—-35=0

((x2=7)(x*+2x—-5)=0

(M3)
x* 4+ 3x34+2x%24+21x—-35=0

(x> =7)(x*+3x—-5)=0
x = +iV7

x*+4x3 +2x?+28x—-35=0

((x* =7)(x—)(x+5) =0
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x = +iV7
(M5)
x*+5x3+2x24+35x—35=0
(x2=7)(x*+5x—-5)=0
x?=-7
x = +iV7
(M6)
xt+6x3+2x2+42x—35=0
(x> =7(x*+6x—-5)=0
x?=-7
x = +iV7
(M7)
xt+7x34+2x2+49x—35=0
(x> =7)(x*+x—-5)=0
x?=-=7
x = +iV7
(M3)
x*+8x3+2x24+56x—35=0
(x2=7(x*+7x—-5)=0
x?=-7
x = +iV7
(M9)

x*+9x3+2x>+63x—-35=0
(x> =7)(x*+9x—-5)=0
x?=-7

x = +iV7

So, for all @ & y € A when expressed as zeros of the polynomial:

x*+ax®+2x>+yx—35=0

© 2024 Global Journals

Notes



Notes

There exists a pattern in both the complex negative square root value and one of

the factors of the negative constant both being -7. This same pattern exists for at least

four other negative integers, five in total: -3, -7, -11, -15, & -19. In similarly structured,

homogenous polynomials, these negative integers alongside their multiple sets result in

the same pattern as shown above.

d) Different Negative Base Multiples of Homogeneous Polynomial Fxpressions
In a slightly altered form of the same polynomial, the pattern also exists for -3 in

the same manner. Using the altered 4" degree polynomial:

xt+ax®+x2+yx—6=0

Set B

Multiples Y
M1
M2 6
M3 9
M4 12
M5 15
M6 18
M7 21
M8 24
M9 27

Results in = +iv/3 and -3 is the negative factor of -6, just as the polynomial

Results in +iV7 and -7 is the negative factor of -35.

xt*+ax®+2x2+yx—-35=0

Similar multiple sets with homogenous expressions of the general polynomial also

exist for -11, -15 & -19.

xt*+ax®+3x2+yx—88=0
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Set C

Multiples a 14
M1 1 11
M2 2 22
M3 3 33
M4 4 44
M5 ) 55
M6 6 66
M7 7 7
M8 8 88
M9 9 99

Results in = +iv/11 and -11 is the negative factor of -88.

x*+ ax3+3x>+yx—180 =0

Set D
Multiples a Y
M1 1 15
M2 2 30
M3 3 45
M4 4 60
M5 ) 75
M6 6 90
M7 7 105
M8 8 120
M9 9 135

Results in = +iv15 and -15 is the negative factor of -180.
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Set D

Multiples a Y
M1 1 19
M2 2 38
M3 3 57
M4 4 76
M5 ) 95
M6 6 114
M7 7 133
M8 8 152
M9 9 171

Results in = +iV19 and -19 is the negative factor of -266.

[11. CONCLUSIONARY DISCUSSION

This study identified a unique pattern where specific integers manifest as both
factors in the polynomial’s constants and as values within the imaginary components of
the roots. While the procedure can be extended to higher-degree polynomials and
additional iterative imaginary zeros, this initial investigation establishes the foundation
for further exploration of the patterns. The patterns identified here, while simple in
scope, contribute to the broader understanding of polynomial structures and their
roots.

While this paper has focused on identifying patterns in fourth-degree
polynomials, future research could explore whether similar patters exist for higher-
degree polynomials and more complex root structures. Additionally, further work could

investigate potential applications of these patterns in other areas of mathematics or
applied fields.
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