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Deformation Modeling of Structurally Regular
Rod Systems
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Abstract- Currently, transformable rod systems are widely used
in spacecraft panel designs and medicine in the form of
various stands. It is of particular theoretical interest to develop
the idea of geometric variability into spatial rod systems of
complex shape. The concept of kinematic shaping of a regular
rod system from a flat to a domed position is proposed. The
finite element method in combination with the modified
Lagrange method is used for numerical implementation. To
assess the level of deformed state of a regular rod lattice,
taking into account genetic nonlinearity, the values of
longitudinal deformation in the rods are used.

Keywords: deformation modeling, rod system, finite
element method, modified lagrange method, genetic
nonlinearity.

I [NTRODUCTION

eformation modeling emerged as a direction in
Dcomputer graphics, enabling the conversion of

the kinematics of a physically observed object
into a virtual reality. The concept of a deformable model
is typically considered from the position of the
mechanics of deformable solids. In accordance with this
concept, the deformation process of a continuum can
be conveniently described in Lagrangian coordinates.
The paradigm of a deformable model is the "snake", the
shape and geometry of whose "body" depend on the
displacements of the key points [1, 2, 3]. Formally, a
"'snake" is a contour specified parametrically, usually as
a cubic spline. The technology of approximating the
initial contour with a spline is based on the procedure of
minimizing a functional associated with the de-formation
energy of the contour, within the boundaries of the field
sur-rounding each key point (fig. 1).
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Fig. 1: Deformable "snake" model

Approximation of the initial contour using a
deformation model "snake" is widely used in biomedical
research (computed tomography), as well as in artificial
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intelligence applications for motion tracking and object
recognition.

Another  approach to  constructing a
geometrically deformable model (GDM) is the concept
based on the expansion of a virtual thin-walled balloon
inside the boundaries of the scanned object (fig. 2). The
mathematical apparatus used in GDM technology is the
finite element method in the form of the displacement
method. The balloon is modeled using finite elements in
the form of thin-walled three-node plates. The geometry
of the balloon at time t is represented in parametric form
[4, 5].

R, v,8) = [ (w,v,6), 1y (w, v, 0,1, (u, v, 0)]

Where .., ¥, ¥, - approximating cubic spline functions
along the axes x, y, z, u, v - dimensionless variables
such that u € [0,1], v € [0,1]. During the scanning of the
internal cavity of the investigated object, each node of
the finite element model is attracted to a point on the
bounding contour in the normal direction (fig. 3). The
current deformed state of the finite element is fully
determined by the metric tensor [6, 7, 8].
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Fig. 2: Technology visualization GDM [6]

Fig. 3: Model of the balloon deformed by a point force
[7]
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According to [6], the adaptive algorithm is
constructed such that at each step, the condition is
satisfied at the nodes of the finite element mesh:

agD(x,y,2) + a;1(x,y,2) + a,T(x,y,z) = 0 (1)

where C(x,y,z) — the objective function associated
with the current position of the node in the model;
D(x,y,z) — The deformation potential (@ monotonically
decreasing or increasing function); I(x,y,z) — the
constraint function, which "informs" the node of the finite
element mesh that it may be in contact with a voxel (a
raster element of the object); T(x,y,z) — The
topological information function, which prevents the
nodes of the finite element model from penetrating the
boundary of the object; a,, a;, a, — weighting
coefficients. Condition (1) causes the model to deform
until all vertices reach the boundary of the scanned
object.

Another direction of deformation modeling is the
analysis of the behavior of spatial truss structures, which
experience large linear and angular displacements with
small deformations during operation. In this case, the
numerical solution of the geometrically nonlinear
problem is based on the iterative Newton-Raphson
procedure and the "correcting arc" method, the essence
of which is the adaptive adjustment of the loading step
size when approaching and after passing the bifurcation
point [9, 10]. It should be noted that when calculating
the rod system by the finite element method (FEM)
taking into account large displacements, the tangent
stiffness matrix is used. The construction of this matrix is
based on the minimization of the deformation energy
potential [9]:

0°U oU ©
y? + dy P

where U - potential strain energy of a finite element
(FE); vy, p@© — vectors of displacements and
generalized external forces FE.

As an llustration of the solution in the
geometrically nonlinear formulation, let us consider a
test example from [9, 11]. A flexible, curved beam with a
rectangular cross-section of 1 m x 1 m, a radius of 100
m, and an arc angle of 45° rigidly fixed at one end
x =0,y =0 z = 0), is subjected to out-of-plane
bending by a concentrated force F = 100 N. The
coordinates of the free end of the beam in the initial
position are [70.71; 70.71; 0] m. The mechanical
constants of the beam material are: Young's modulus E
= 10 MPa; Poisson's ratio v = 0. Figure 4 shows the
results of the calculation performed using the nonlinear
solver of the ANSYS software package [12]. The beam
was discretized into 16 spatial beam-type finite elements
BEAMA4.
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Fig. 4: Results of the analysis of the curved beam:

a - initial state of the beam;
b - visualization of the beam deformation relative to the
initial position (dashed line)

The coordinates of the displacement of the load
application point were [46.84; 1556; 53.66] m
according to [9, 11] and [46.9; 15.6; 53.6] m in
accordance with the ANSYS solution. As can be seen,
the given displacement values are quite close.

The above-presented concepts of deformation
modeling are highly specialized and cannot be
extended to problems in structural mechanics related to
the study of kinematically transformable truss systems.
In this regard, the development of a methodology for
finite element modeling of rod structures, taking into
account the structural shape change of the initial
geometry, is an urgent task.

[I.  MATERIALS AND METHODS

We will conduct a study of a regular truss
system, shown in its initial (undeformed) state in Fig. 5,
considering the controlled displacement of the boundary
nodes 1, 2, ..., 6. In the separate fragments of Fig. 5, the
letters L and B denote the grids formed by the hinge-rod
(truss) and beam finite elements, respectively. In both
cases, the nodal platforms S are modeled as practically
non-deformable beam finite elements. The distinctive
feature of this computational scheme compared to the
scheme in [13] is the presence of the nodal platform S,
modeled by rods with a modulus of elasticity exceeding
the modulus of elasticity of the connecting rods by five
orders of magnitude. From a structural point of view, the
introduction of the platforms S allows us to conditionally
account for the nod-al connections of real truss
systems. An example of the modeled structure of a real
nodal connection is shown in Fig. 6 [14]. This node is a
demountable structure with one central and six
peripheral bolted connections, providing relative mobility
of the truss members.
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Fig. 5: The truss model in the initial (undeformed) state



Fig. 6: The structure of the nodal connection [14]

To investigate the process of shape, change of
the truss structure, we will apply the modified
Lagrangian method [15], the essence of which is in the
discrete increment of the displacements of the boundary
nodes and the reconstruction of the geometry of the
finite element mesh in the current initial basis, taking into
account the obtained nodal displacements. In the
literature on structural mechanics, this type of
nonlinearity is called genetic [16]. For the soft-ware
implementation of this concept, we will use the APDL
programming language [12], integrated into the ANSYS
Mechanical software package.

During the kinematic quasi-static shape
change, intemal forces will arise in the structural
members due to the gravitational influence and
structural connections. To assess the level of deformed
state of the finite element model, we will use the values
of the axial strain in the truss members.

[11. RESEARCH RESULTS

As an object of study, we consider a regular
hexagonal truss system in plain view (Fig. 7). The
lengths of the rods forming the regular lattice of the
structure are 0.4 m. The radius of the circumscribed
circle of the platform S is 0.05 m. The mechanical
constants of the rods (aluminum alloy) are E = 70 GPa,
v = 0.32, density p = 2885 kg/ms. The truss members
and the S platforms have a tubular cross-section with an
outer diameter of 18 mm and a wall thickness of 1.5
mm.

5,05 M

oy

437 m

Fig. 7: The initial dimensions of the hexagonal truss
structure

Using modal analysis, we will verify the truss
and beam models for the presence of 'rigid body"

displacements. Fig. 8 shows the visualization of the first
mode of natural vibrations of these models.

Puc. 8: The first natural mode of vibration:

a—truss FE; b — beam FE

As can be seen, the regular lattice modeled by
truss finite elements is kinematically changeable, as it
allows for the rotation of rigid platforms. Therefore, in the
future study, we will use only beam finite elements.

It is necessary to understand that the

transformation process from the position where the
coordinates of all nodes are equal to 0 will not lead to
the expected rise of the rod lattice, i.e., it is necessary to
"start" (begin the transformation) with a pre-prepared
dome-like geometry (Fig. 9). Let's take the "starting" rise

of the arrow AU, = 0,1m.

jAuZ

Fig. 9: The "starting" position of the hexagonal rod
structure

Let's analyze the kinematic shape change for
the considered rod structure in the "starting" position,
with discrete displacements of the contour nodes in the
direction of the X and Y axes (Fig. 10). We assume that
the steps for displacements Ax and Ay are synchronous
and equal to 0.01 m.

Fig. 11 shows the visualization of the structure's
shape after 50 steps. The rise at the central point after
the completion of the transformation was 0.92 m. The
point diagrams of the changes in the longitudinal
deformation in the lattice rods € = Al/l, where Al is the
change in the rod length, and | is the initial rod length,
with discrete displacements along the X and Y axes, are
shown in Fig. 12.

Fig. 10: Discrete displacements along the X and Y axes
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Fig. 11: Visualization of the shape change after 50 steps
of displacements along the X and Y axes
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Fig. 12: Point diagrams of changes in the criterion in
the rods with displacement of the contour nodes along
the X and Y axes

From the graphs shown in Fig. 12, it is evident
that the most heavily loaded members under the given
transformation scheme will be the struts adjacent to the
boundary nodes. In physical terms, the extreme value of
Al/l = 3.5% corresponds to a member elongation of Al
= 0,4'0,035 = 0.014 m (14 mm). Naturally, such an axial
deformation exceeds the limits of linear theory, and for
the corresponding truss members in the actual
structure, it is necessary to provide compensators to
accommodate this excessive elongation. For this
purpose, telescopic compensators with unidirectional
collet grips would be a suitable solution.

The results of a similar problem solved using
the nonlinear solver of the ANSYS Mechanical suite are
presented in Fig. 13. In this case, the initial position of
the truss was also used, and kinematic boundary
conditions in the form of simultaneous displacements of
the boundary nodes of 0.5 m were applied. The
calculations were performed considering large
displacements (Large Displacement Static). Comparing
the deformed configurations of the truss shown in Figs.
11 and 13, we establish their qualitative agreement.
However, the value of the maximum rise f,,, = 0.79 m
during the simultaneous transformation is lower than the
f.o« = 092 m observed in the case of discrete shape
change. Furthermore, there is a significant qualitative
and quantitative difference in the distribution of axial
strains in the truss members. In particular, the extreme
value of € in the case of discrete shape change is more
than an order of magnitude greater than the
corresponding value shown in Fig. 13.
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Fig. 13: Solution results using a nonlinear solver:
U, - vertical movements; & - longitudinal deformation.

In summary, when modeling the transformation
process of a regular lattice system, the proposed
methodology of discrete shape change should be
employed, combined with stepwise adjustment and
reconstruction of the finite element mesh, taking into
account the obtained nodal displacements. This
approach is preferable over the use of a single,
simultaneous transformation, as it allows for a more
accurate capture of the complex deformation behavior
of the truss structure.

The transformation scheme of a hexagonal
truss structure with discrete displacements  of

Au, = 0,01 mm only along the X-axis is considered (Fig.
14).
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Fig. 14: Discrete displacements along the X axis

The visualization of the truss configuration after
50 transformation steps is shown in Fig. 15. In this case,
the rise at the pole point after the completion of the
transformation was 1.3 m. The corresponding point
diagrams of the axial deformations in the members are
presented in Fig. 16.

Fig. 15: The visualization of the truss configuration after
50 transformation steps along the X axis
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structure under uniform compression along the X and Y
axes (Fig. 11) and compression only in the X direction  Fjg. 27: Visualization of the shape transformation after
(Fig. 14), we conclude that the latter case exhibits a 100 displacement steps along the X-axis
greater degree of surface curvature. However, the
maximum value of the ratio Al/l Fig. 16 is almost
seven times higher than the similar value presented in
the graphs of Fig. 12.

As the next example, we will investigate the
kinematic shape change of a rectangular regular truss
structure, as shown in Fig. 17. 40 Alll %

Comparing the diagrams in Figs. 22 and 23, we
observe that the largest axial forces in the truss
members occur during the initial stage of the
transformation. With further deformation of the truss, the
increase in the parameter Al/l is approximately 1.5%.
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Fig. 17: Initial dimensions of the rectangular truss 0 .
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The initial configuration of this truss structure is Fig. 22: Diagram (50 steps)
shown in Fig. 18. In this case, we assume 4u,= 0,5 m.
The scheme of the 4-node kinematic loading is AllL%
presented in Fig. 19. Here, 4u, = 0,05 m. 4:071.
3511, ;
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Fig. 23: Diagram (100 steps)

Figure 24 presents the truss configuration under
"rigid" two-sided transformation (50 steps).

Fig. 19: Scheme of 4-node kinematic loading

The visualization of the truss configuration after
50 and 100 transformation steps is shown in Figs. 20 ‘
and 21, respectively, while the corresponding point  Fig. 24: Visualization of the shape transformation of the
diagrams of A4l/1 are presented in Figs. 22 and 23. truss under "rigid" displacement along the X-axis
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The diagram of 4l/I for the "rigid" transformation
scheme of the truss is shown in Fig. 25.
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Fig. 25: Diagram of Al /1 for "rigid" displacement

Comparing the results, at the same number of
transformation steps, the amplitude values of the
parameter in Fig. 25 are about 1% lower than the
corresponding values shown in Fig. 22.

V. DiscussioN AND CONCLUSIONS

A finite element modeling methodology has
been developed for the transformation of a regular truss
system from a planar to a dome-like configuration
through the discrete displacement of the boundary
nodes of the truss. As a limiting criterion for the
structural  shape  transformation  process, the
magnitudes of the axial strains in the truss members
have been proposed.
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