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Abstract-

 

Currently, transformable rod systems are widely used 
in spacecraft panel designs and medicine in the form of 
various stands. It is of particular theoretical interest to develop 
the idea of geometric variability into spatial rod systems of 
complex shape. The concept of kinematic shaping of a regular 
rod system from a flat to a domed position is proposed. The 
finite element method in combination with the modified 
Lagrange method is used for numerical implementation. To 
assess the level of deformed state of a regular rod lattice, 
taking into account genetic nonlinearity, the values of 
longitudinal deformation in the rods are used.
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 I.

 

Introduction

 eformation modeling emerged as a direction in 
computer graphics, enabling the conversion of 
the kinematics of a physically observed object 

into a virtual reality. The concept of a deformable model 
is typically considered from the position of the 
mechanics of deformable solids. In accordance with this 
concept, the deformation process of a continuum can 
be conveniently described in Lagrangian coordinates. 
The paradigm of a deformable model is the "snake", the 
shape and geometry of whose "body" depend on the 
displacements of the key points [1, 2, 3]. Formally, a 
"snake" is a contour specified parametrically, usually as 
a cubic spline. The technology of approximating the 
initial contour with a spline is based on the procedure of 
minimizing a functional associated with the de-formation 
energy of the contour, within the boundaries of the field   
sur-rounding each key point (fig. 1).

 

 Fig. 1:

 

Deformable "snake" model

 
 

Approximation of the initial contour using a 
deformation model "snake" is widely used in biomedical 
research (computed tomography), as well as in artificial 

intelligence applications for motion tracking and object 
recognition. 

Another approach to constructing a 
geometrically deformable model (GDM) is the concept 
based on the expansion of a virtual thin-walled balloon 
inside the boundaries of the scanned object (fig. 2). The 
mathematical apparatus used in GDM technology is the 
finite element method in the form of the displacement 
method. The balloon is modeled using finite elements in 
the form of thin-walled three-node plates. The geometry 
of the balloon at time t is represented in parametric form 
[4, 5]. 

𝑅𝑅(𝑢𝑢,𝑣𝑣, 𝑡𝑡) = �𝜓𝜓𝑥𝑥(𝑢𝑢, 𝑣𝑣, 𝑡𝑡),𝜓𝜓𝑦𝑦(𝑢𝑢, 𝑣𝑣, 𝑡𝑡),𝜓𝜓𝑧𝑧(𝑢𝑢, 𝑣𝑣, 𝑡𝑡)� 

Where 𝜓𝜓𝑥𝑥 , 𝜓𝜓𝑦𝑦 , 𝜓𝜓𝑧𝑧 - approximating cubic spline functions 
along the axes x, y, z; u, v - dimensionless variables 
such that 𝑢𝑢 ∈ [0,1], 𝑣𝑣 ∈ [0,1]. During the scanning of the 
internal cavity of the investigated object, each node of 
the finite element model is attracted to a point on the 
bounding contour in the normal direction (fig. 3). The 
current deformed state of the finite element is fully 
determined by the metric tensor [6, 7, 8].

 

𝑔𝑔(𝑅𝑅(𝑢𝑢, 𝑣𝑣, 𝑡𝑡)) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

 

Step 1

 
 

Step 2

 
 

Step

 

3

 

Fig. 2:

 

Technology visualization GDM [6]

 

 
 

Fig. 3:

 

Model of the balloon deformed by a point force 
[7]
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According to [6], the adaptive algorithm is 
constructed such that at each step, the condition is 
satisfied at the nodes of the finite element mesh: 

𝛼𝛼0𝐷𝐷(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) + 𝛼𝛼1𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧) + 𝛼𝛼2𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≥ 0 (1) 

where 𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧) — the objective function associated 
with the current position of the node in the model; 
𝐷𝐷(𝑥𝑥,𝑦𝑦, 𝑧𝑧) — The deformation potential (a monotonically 
decreasing or increasing function); 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧) — the 
constraint function, which "informs" the node of the finite 
element mesh that it may be in contact with a voxel (a 
raster element of the object); 𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧) — The 
topological information function, which prevents the 
nodes of the finite element model from penetrating the 
boundary of the object; 𝛼𝛼0, 𝛼𝛼1, 𝛼𝛼2 — weighting 
coefficients. Condition (1) causes the model to deform 
until all vertices reach the boundary of the scanned 
object.  

Another direction of deformation modeling is the 
analysis of the behavior of spatial truss structures, which 
experience large linear and angular displacements with 
small deformations during operation. In this case, the 
numerical solution of the geometrically nonlinear 
problem is based on the iterative Newton-Raphson 
procedure and the "correcting arc" method, the essence 
of which is the adaptive adjustment of the loading step 
size when approaching and after passing the bifurcation 
point [9, 10]. It should be noted that when calculating 
the rod system by the finite element method (FEM) 
taking into account large displacements, the tangent 
stiffness matrix is used. The construction of this matrix is 
based on the minimization of the deformation energy 
potential [9]: 

𝜕𝜕2𝑈𝑈
𝜕𝜕𝑦𝑦2 +

𝜕𝜕𝑈𝑈
𝜕𝜕𝑦𝑦 = 𝑃𝑃(𝑒𝑒)  

where U  – potential strain energy of a finite element 
(FE); 𝑦𝑦, 𝑃𝑃(𝑒𝑒) — vectors of displacements and 
generalized external forces FE.  

As an illustration of the solution in the 
geometrically nonlinear formulation, let us consider a 
test example from [9, 11]. A flexible, curved beam with a 
rectangular cross-section of 1 m × 1 m, a radius of 100 
m, and an arc angle of 45°, rigidly fixed at one end                    
(x = 0, y = 0, z = 0), is subjected to out-of-plane 
bending by a concentrated force F = 100 N. The 
coordinates of the free end of the beam in the initial 
position are [70.71; 70.71; 0] m. The mechanical 
constants of the beam material are: Young's modulus E 
= 10 MPa; Poisson's ratio ν = 0. Figure 4 shows the 
results of the calculation performed using the nonlinear 
solver of the ANSYS software package [12]. The beam 
was discretized into 16 spatial beam-type finite elements 
BEAM4. 

 

Fig. 4: Results of the analysis of the curved beam: 

a - initial state of the beam;  
b - visualization of the beam deformation relative to the 
initial position (dashed line) 

The coordinates of the displacement of the load 
application point were [46.84; 15.56; 53.66] m 
according to [9, 11] and [46.9; 15.6; 53.6] m in 
accordance with the ANSYS solution. As can be seen, 
the given displacement values are quite close. 

The above-presented concepts of deformation 
modeling are highly specialized and cannot be 
extended to problems in structural mechanics related to 
the study of kinematically transformable truss systems. 
In this regard, the development of a methodology for 
finite element modeling of rod structures, taking into 
account the structural shape change of the initial 
geometry, is an urgent task.  

II. Materials and Methods 

We will conduct a study of a regular truss 
system, shown in its initial (undeformed) state in Fig. 5, 
considering the controlled displacement of the boundary 
nodes 1, 2, ..., 6. In the separate fragments of Fig. 5, the 
letters L and B denote the grids formed by the hinge-rod 
(truss) and beam finite elements, respectively. In both 
cases, the nodal platforms S are modeled as practically 
non-deformable beam finite elements. The distinctive 
feature of this computational scheme compared to the 
scheme in [13] is the presence of the nodal platform S, 
modeled by rods with a modulus of elasticity exceeding 
the modulus of elasticity of the connecting rods by five 
orders of magnitude. From a structural point of view, the 
introduction of the platforms S allows us to conditionally 
account for the nod-al connections of real truss 
systems. An example of the modeled structure of a real 
nodal connection is shown in Fig. 6 [14]. This node is a 
demountable structure with one central and six 
peripheral bolted connections, providing relative mobility 
of the truss members. 

 

Fig. 5:
 
The truss model in the initial (undeformed) state
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Fig. 6: The structure of the nodal connection [14] 

To investigate the process of shape, change of 
the truss structure, we will apply the modified 
Lagrangian method [15], the essence of which is in the 
discrete increment of the displacements of the boundary 
nodes and the reconstruction of the geometry of the 
finite element mesh in the current initial basis, taking into 
account the obtained nodal displacements. In the 
literature on structural mechanics, this type of 
nonlinearity is called genetic [16]. For the soft-ware 
implementation of this concept, we will use the APDL 
programming language [12], integrated into the ANSYS 
Mechanical software package. 

During the kinematic quasi-static shape 
change, internal forces will arise in the structural 
members due to the gravitational influence and 
structural connections. To assess the level of deformed 
state of the finite element model, we will use the values 
of the axial strain in the truss members. 

III. Research Results 

As an object of study, we consider a regular 
hexagonal truss system in plain view (Fig. 7). The 
lengths of the rods forming the regular lattice of the 
structure are 0.4 m. The radius of the circumscribed 
circle of the platform S is 0.05 m. The mechanical 
constants of the rods (aluminum alloy) are E = 70 GPa, 
ν = 0.32, density ρ = 2885 kg/m³. The truss members 
and the S platforms have a tubular cross-section with an 
outer diameter of 18 mm and a wall thickness of 1.5 
mm. 

 

Fig. 7: The initial dimensions of the hexagonal truss 
structure 

Using modal analysis, we will verify the truss 
and beam models for the presence of "rigid body" 

displacements. Fig. 8 shows the visualization of the first 
mode of natural vibrations of these models. 

 

                            а
 
                                    b 

Рис. 8:
 
The first natural mode of vibration:

 

а — truss

 

FE; b — beam FE

 

As can be seen, the regular lattice modeled by 
truss finite elements is kinematically changeable, as it 
allows for the rotation of rigid platforms. Therefore, in the 
future study, we will use only beam finite elements.

 

It is necessary to understand that the 
transformation process from the position where the 
coordinates of all nodes are equal to 0 will not lead to 
the expected rise of the rod lattice, i.e., it is necessary to 
"start" (begin the transformation) with a pre-prepared 
dome-like geometry (Fig. 9). Let's take the "starting" rise 
of the arrow zu∆ = 0,1m.  

 

Fig. 9:

 

The "starting" position of the hexagonal rod 
structure

 

Let's analyze the kinematic shape change for 
the considered rod structure in the "starting" position, 
with discrete displacements of the contour nodes in the 
direction of the X and Y axes (Fig. 10). We assume that 
the steps for displacements Δx and Δy are synchronous 
and equal to 0.01 m.

 

Fig. 11 shows the visualization of the structure's 
shape after 50 steps. The rise at the central point after 
the completion of the transformation was 0.92 m. The 
point diagrams of the changes in the longitudinal 
deformation

 

in the lattice rods ε

 

= Δl/l, where Δl is the 
change in the rod length, and l is the initial rod length, 
with discrete displacements along the X and Y axes, are 
shown in Fig. 12.

 

 

Fig. 10:

 

Discrete displacements along the X and Y axes
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Fig. 11:
 
Visualization of the shape change after 50 steps 
of displacements along the X and Y axes

 

  

Fig. 12:

 

Point diagrams of changes in the criterion   in 
the rods with displacement of the contour nodes along 
the X and Y axes

 

From the graphs shown in Fig. 12, it is evident 
that the most heavily loaded members under the given 
transformation scheme will be the struts adjacent to the 
boundary nodes. In physical terms, the extreme value of 
𝛥𝛥𝛥𝛥/𝑙𝑙

 

= 3.5% corresponds to a member elongation of 𝛥𝛥𝛥𝛥

 

= 0,4·0,035 = 0.014 m (14 mm). Naturally, such an axial 
deformation exceeds the limits of linear theory, and for 
the corresponding truss members in the actual 
structure, it is necessary to provide compensators to 
accommodate this excessive elongation. For this 
purpose, telescopic compensators with unidirectional 
collet grips would be a suitable solution.

 

The results of a similar problem solved using 
the nonlinear solver of the ANSYS Mechanical suite are 
presented in Fig. 13. In this case, the initial position of 
the truss was also used, and kinematic boundary 
conditions in the form of simultaneous displacements of 
the boundary nodes of 0.5 m were applied. The 
calculations were performed considering large 
displacements (Large Displacement Static). Comparing 
the deformed configurations of the truss shown in Figs. 
11 and 13, we establish their qualitative agreement. 
However, the value of the maximum rise fmax

 

= 0.79 m 
during the simultaneous transformation is lower than the 
fmax

 

= 0.92 m observed

 

in the case of discrete shape 
change. Furthermore, there is a significant qualitative 
and quantitative difference in the distribution of axial 
strains in the truss members. In particular, the extreme 
value of ε

 

in the case of discrete shape change is more

 

than an order of magnitude greater than the 
corresponding value shown in Fig. 13.

 
 

   
 
 
 

 

zu , m 

  

/l l∆  

 

Fig. 13: Solution results using a nonlinear solver: 

 zu – vertical movements;  ε – longitudinal deformation. 

In summary, when modeling the transformation 
process of a regular lattice system, the proposed 
methodology of discrete shape change should be 
employed, combined with stepwise adjustment and 
reconstruction of the finite element mesh, taking into 
account the obtained nodal displacements. This 
approach is preferable over the use of a single, 
simultaneous transformation, as it allows for a more 
accurate capture of the complex deformation behavior 
of the truss structure. 
 The transformation scheme of a hexagonal 
truss structure with discrete displacements of                      

xu∆ = 0,01 mm only along the X-axis is considered (Fig. 
14). 

 

Fig. 14:
 
Discrete

 
displacements along the X axis

 

The visualization of the truss configuration after 
50 transformation steps is shown in Fig. 15. In this case, 
the rise at the pole point after the completion of the 
transformation was 1.3 m. The corresponding point 
diagrams of the axial deformations in the members are 
presented in Fig. 16.

 

 

Fig. 15:

 

The visualization of the truss configuration after 
50 transformation steps along the X axis
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Fig. 16: The corresponding point diagrams of the axial 
deformations in the members 

Comparing the dome-shaped forms of the truss 
structure under uniform compression along the X and Y 
axes (Fig. 11) and compression only in the X direction 
(Fig. 14), we conclude that the latter case exhibits a 
greater degree of surface curvature. However, the 
maximum value of the ratio /l l∆  Fig. 16 is almost 
seven times higher than the similar value presented in 
the graphs of Fig. 12. 

As the next example, we will investigate the 
kinematic shape change of a rectangular regular truss 
structure, as shown in Fig. 17. 

  
 

Fig.
 
17:

 
Initial dimensions of the rectangular truss 

structure
 

The initial configuration of this truss structure is 
shown in Fig. 18. In this case, we assume 𝛥𝛥𝑢𝑢𝑧𝑧= 0,5 m. 
The scheme of the 4-node kinematic loading is 
presented in Fig. 19. Here, 𝛥𝛥𝑢𝑢𝑥𝑥= 0,05 m.

 

 

Fig. 18:

 

"Initial" position of the rectangular truss structure

 

 

Fig. 19:

 

Scheme of 4-node kinematic loading

 

The visualization of the truss configuration after 
50 and 100 transformation steps is shown in Figs. 20 
and 21, respectively, while the corresponding point 
diagrams of 𝛥𝛥𝛥𝛥/𝑙𝑙

 

are presented in Figs. 22 and 23.

 

  

 
 
 
 

 

Fig. 20: Visualization of the shape transformation after 
50 displacement steps along the X-axis 

 

Fig. 21: Visualization of the shape transformation after 
100 displacement steps along the X-axis 

Comparing the diagrams in Figs. 22 and 23, we 
observe that the largest axial forces in the truss 
members occur during the initial stage of the 
transformation. With further deformation of the truss, the 
increase in the parameter 𝛥𝛥𝛥𝛥/𝑙𝑙 is approximately 1.5%. 
 

 

Fig. 22: Diagram (50 steps) 

 

Fig. 23:
 
Diagram (100 steps)

 

Figure 24 presents the truss configuration under 
"rigid" two-sided transformation (50 steps).

 

 

Fig. 24:

 

Visualization of the shape transformation of the 
truss under "rigid" displacement along the X-axis
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The diagram of 𝛥𝛥𝛥𝛥/𝑙𝑙 for the "rigid" transformation 
scheme of the truss is shown in Fig. 25. 

 

Fig. 25:
 
Diagram of 𝛥𝛥𝛥𝛥/𝑙𝑙

 
for "rigid" displacement

 

Comparing the results, at the same number of 
transformation steps, the amplitude values of the 
parameter in Fig. 25 are about 1% lower than the 
corresponding values shown in Fig. 22.

 

IV.
 

Discussion and
 
Conclusions 

A finite element modeling methodology has 
been developed for the transformation of a regular truss 
system from a planar to a dome-like configuration 
through the discrete displacement of the boundary 
nodes of the truss. As a limiting criterion for the 
structural shape transformation process, the 
magnitudes of the axial strains in the truss members 
have been proposed.
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